Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T04:27:05.011Z Has data issue: false hasContentIssue false

Pathophysiology of Migraine — New Insights

Published online by Cambridge University Press:  02 December 2014

RJ Hargreaves
Affiliation:
Merck Research Laboratories, West Point PA USA
SL Shepheard
Affiliation:
Merck Research Laboratories, West Point PA USA Merck Sharp and Dohme, Neuroscience Research Centre, Harlow, Essex, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Current theories propose that the primary dysfunction in migraine occurs within the CNS and that this evokes changes in blood vessels within pain-producing intracranial meningeal structures that give rise to headache pain. Migraine is now thought of as a neurovascular disorder. It has been proposed that genetic abnormalities may be responsible for altering the response threshold to migraine specific trigger factors in the brain of a migraineur compared to a normal individual. The exact nature of the central dysfunction that is produced in migraineurs is still not clear and may involve spreading depression-like phenomena and activation of brain stem monoaminergic nuclei that are part of the central autonomic, vascular and pain control centers. It is generally thought that local vasodilatation of intracranial extracerebral blood vessels and a consequent stimulation of surrounding trigeminal sensory nervous pain pathways is a key mechanism underlying the generation of headache pain associated with migraine. This activation of the ‘trigeminovascular system’ is thought to cause the release of vasoactive sensory neuropeptides, especially CGRP, that increase the pain response. The activated trigeminal nerves convey nociceptive information to central neurons in the brain stem trigeminal sensory nuclei that in turn relay the pain signals to higher centers where headache pain is perceived. It has been hypothesized that these central neurons may become sensitized as a migraine attack progresses. The ‘triptan’ anti-migraine agents (e.g. sumatriptan, rizatriptan, zolmitriptan naratriptan) are serotonergic agonists that have been shown to act selectively by causing vasoconstriction through 5-HT1B receptors that are expressed in human intracranial arteries and by inhibiting nociceptive transmission through an action at 5-HT1D receptors on peripheral trigeminal sensory nerve terminals in the meninges and central terminals in brain stem sensory nuclei. These three complementary sites of action underlie the clinical effectiveness of the 5-HT1B/1D agonists against migraine headache pain and its associated symptoms.

Résumé

RÉSUMÉ

Les théories actuelles proposent que la dysfonction primaire dans la migraine est localisée dans le SNC et qu’elle provoque des changements dans les vaisseaux sanguins localisés dans les structures méningées intracrâniennes produisant ainsi la douleur. La céphalée résulte de ces changements. On pense maintenant que la migraine est un désordre neurovasculaire. Des anomalies génétiques pourraient être responsables de l’altération du seuil de la réponse aux facteurs spécifiques déclenchant la migraine dans le cerveau d’un migraineux comparé à un individu normal. La nature exacte de la dysfonction centrale chez les migraineux n’est pas encore claire et pourrait impliquer un phénomène qui se propage ressemblant à la dépression et à l’activation des noyaux monoaminergiques du tronc cérébral qui font partie des centres autonomes, vasculaires et du contrôle de la douleur. On pense en général que la vasodilatation locale des vaisseaux sanguins intracrâniens extracérébraux et une stimulation des voies sensitives nociceptives adjacentes du trijumeau constituent un mécanisme clé dans la production de la céphalée associée à la migraine. On pense que cette activation du “système trigéminovasculaire” provoque la libération de neuropeptides sensitifs vasoactifs, spécialement du CGRP qui augmente la réponse douloureuse. Les nerfs trijumeaux activés amènent l’information nociceptive aux neurones centraux situés dans les noyaux sensitifs trigéminés du tronc cérébral qui, à leur tour, relayent les signaux douloureux aux centres supérieurs où la douleur est perçue. On a émis l’hypothèse que ces neurones centraux peuvent devenir sensibilisés à mesure que l’accès de migraine progresse. Les agents antimigraineux de la famille du triptan (sumatriptan, rizatriptan, zolmitriptan, naratriptan) sont des agonistes sérotoninergiques dont l’action sélective sur les récepteurs 5-HT1B, exprimés dans les artères intracrâniennes humaines, cause une vasoconstriction et inhibe la transmission nociceptive par leur action sur les récepteurs 5-HT1D situés sur les terminaisons nerveuses sensitives périphériques du trijumeau dans les méninges et sur les terminaisons centrales dans les noyaux sensitifs du tronc cérébral. Ces trois sites complémentaires d’activité expliquent l’efficacité clinique des agonistes 5-HT1B/1D contre la migraine et ses symptômes associés.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

REFEEENCES

1. Ophoff, RA, Terwindt, GM, Vergouwe, MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996;87: 543552.CrossRefGoogle ScholarPubMed
2. Frants, RR, Ophoff, RA, Terwindt, GM. The future of headache genetics. In: Olesen, J, Bouser, M-G, eds. Genetics of Headache Disorders. New York: Lippincott-Raven, 1998.Google Scholar
3. Hans, M, Luvisetto, S, Williams, ME, et al. Functional consequences of mutations in the human α 1A calcium channel subunit linked to familial hemiplegic migraine. J Neurosci 1999;19: 16101619.CrossRefGoogle Scholar
4. Ferrari, M. Migraine. Lancet 1998;351: 10431051.CrossRefGoogle ScholarPubMed
5. Lauritzen, M. Pathophysiology of the migraine aura: the spreading depression theory. Brain 1994;117: 199210.Google Scholar
6. Welch, KMA. Pathogenesis of migraine. Sem Neurol 1997;17: 335341.Google Scholar
7. Cutrer, FM, Sorensen, G, Weisskof, R, et al. Perfusion weighted imaging defects during spontaneous migraine aura. Ann Neurol 1998;43: 2531.CrossRefGoogle Scholar
8. Read, SJ, Parsons, AA. Cortical spreading depression in migraine. In: Edvinsson, L, ed. Migraine and Headache Pathophysiology. London: Martin Dunitz, 1999: 8192.Google Scholar
9. Raskin, NH, Hosobuchi, Y, Lamb, S. Headache may arise from perturbation of the brain. Headache 1987;27:416420.Google Scholar
10. Weiller, C, May, A, Limmroth, V, et al. Brain stem activation in spontaneous human migraine attacks. Nature Med 1995;1: 658660.Google Scholar
11. May, A, Bahra, A, Buchel, C, Frackowy, PJ. Hypothalamic activation in cluster headache attacks. Lancet 1998;352: 275278.CrossRefGoogle ScholarPubMed
12. May, A, Kaube, H, Buchel, C, et al. Experimental cranial pain elicited by capsaicin: a PET study. Pain 1998;74: 6166.Google Scholar
13. Welch, KMA, 1Cao, Y, Aurora, S, et al. MRI of the occipital cortex, rednucleus and substantia nigra during visual aura of migraine. Neurology 1998; 51: 14651469.CrossRefGoogle Scholar
14. Cerbo, R, Barbanti, P, Buzzi, MG, et al. Dopamine hypersensitivity in migraine: role of the apomorphine test. Clin Neuropharmacol 1997;20:3641.Google Scholar
15. Peroutka, SJ. Dopamine and migraine. Neurology 1997;49: 12311238.Google Scholar
16. Dahlof, CGH, Hargreaves, RJ. Pathophysiology and pharmacology of migraine. Is there a place for anti-emetics in future treatment strategies? Cephalalgia 1998;18: 593604.Google Scholar
17. Aurora, SK, Ahmad, BK, Welch, KM, Bhardhwaj, P, Ramadan, NM. Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 1998;50:11111114.Google Scholar
18. Afra, J, Mascia, A, Gerard, P, Maertens de Noordhout, A, Schoenen, J. Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann Neurol 1998;44: 209215.Google Scholar
19. Ray, BS, Wolff, HG. Experimental studies on headache: pain sensitive structures of the head and their significance in headache. Arch Surgery 1940;41: 813856.Google Scholar
20. Wolff, HG. Headache and Other Head Pain. New York: Oxford University Press, 1963.Google Scholar
21. Moskowitz, MA. The neurobiology of vascular head pain. Ann Neurol 1984;16: 157168.Google Scholar
22. Moskowitz, MA. The visceral organ brain: implications for the pathophysiology of vascular head pain. Neurology 1991;41: 182186.Google Scholar
23. Gebhart, GF. Visceral pain mechanisms: relevance to migraine. In: Olesen, J, Moskowitz, MA, eds. Experimental Headache Models. Philadelphia: Lippincott-Raven Publishers, 1995:39q47.Google Scholar
24. Fozard, JR. 5-hydroxytryptamine and nitric oxide: the causal relationship between two endogenous precipitants of migraine. In: Sandler, M, Ferrari, M and Harnett, S, eds. Migraine Pharmacology and Genetics. Chapman and Hall: London, 1996:167179.Google Scholar
25. Olesen, J, Thomsen, LL, Iversen, H. Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol Sci 1994;15: 149153.Google Scholar
26. Thomsen, LL, Olesen, J. Experimental vascular headache models in man. In: Edvinsson, L, ed. Migraine and Headache Pathophysiology. London: Martin Dunitz, 1999:141154.Google Scholar
27. Lassen, LH, Ashina, M, Christiansen, I, Ulrich, V, Olesen, J. Nitric oxide synthase inhibition in migraine. Lancet 1997;349: 401.Google Scholar
28. Humphrey, PP, Feniuk, W. Mode of action of the anti-migraine drug sumatriptan. Trends Pharmacol Sci 1991;12:444446.Google Scholar
29. Goadsby, PJ, Edvinsson, L, Ekman, R. Vasoactive neuropeptide release in the extracerebral circulation during migraine headache. Ann Neurol 1990;28:183187.Google Scholar
30. Goadsby, PJ, Edvinsson, L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuro-peptide changes seen in humans and cats. Ann Neurol 1993;33:4856.Google Scholar
31. Goadsby, PJ, Zagami, AS, Lambert, GA. Neural processing of craniovascular pain: a synthesis of the central structures involved in migraine. Headache 1991;31: 365371.Google Scholar
32. Strassman, AM, Raymond, SA, Burstein, R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature 1996;384: 560564.Google Scholar
33. Burstein, R, Yamamura, H, Malick, A, Strassman, AM. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 1998;79: 964982.CrossRefGoogle ScholarPubMed
34. Cumberbatch, MJ, Williamson, DJ, Mason, GS, Hill, RG, Hargreaves, RJ. Dural vasodilation causes a sensitization of rat caudal trigeminal neurones in vivo that is blocked by a 5-HT1B/1D agonist. Br J Pharmacol 1999;126:14781486.Google Scholar
35. Hamel, E, Fan, E, Linville, D, et al. Expression of mRNA for the serotonin 5-hydroxytryptamine1Dß receptor subtype in human and bovine cerebral arteries. Mol Pharmacol 1993;44:242246.Google Scholar
36. Longmore, J, Shaw, D, Smith, D, et al. Differential distribution of 5-HT1D- and 5-HT1B-immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new anti-migraine drugs. Cephalalgia 1997;17:835842.Google Scholar
37. Longmore, J, Razzaque, Z, Shaw, D, et al. Comparison of the vasoconstrictor effects of rizatriptan and sumatriptan in human isolated cranial arteries: immunohistochemical demonstration of the involvement of 5-HT1B receptors. Br J Clin Pharmacol 1998;46: 577582.Google Scholar
38. Bouchelet, I, Cohen, Z, Case, B, Seguela, P, Hamel, E. Differential expression of sumatriptan-sensitive 5-hydroxytryptamine receptors in human trigeminal ganglia and cerebral blood vessels. Mol Pharmacol 1998;50:219223.Google Scholar
39. Rebeck, GW, Maynard, KI, Hyman, BT, Moskowitz, MA. Selective 5-HT1D serotonin gene receptor expression in trigeminal ganglia. Proc Natl Acad Sci USA 1994;91:36663669.Google Scholar
40. Bruinvels, AT, Landwehrmeyer, B, Gustafson, EL, et al. Localization of 5-HT1B, 5-HT1Da, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 1994;33: 367386.Google Scholar
41. Pascual, J, Castro, ME, Romon, T, et al. Anatomical distribution of 5-HT1F receptors in the human brain suggests a role in migraine. Cephalalgia 1997;17:341.Google Scholar
42. Castro, ME, Pascual, J, Romon, T,et al. Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F receptors) in human brain: focus on brain stem and spinal cord. Neuropharmacology 1997;36:535542.CrossRefGoogle ScholarPubMed
43. Cohen, ML, Johnson, KW, Schenck, KW. Lack of vasoconstriction to the selective 5-HT1F receptor agonists LY334370 and LY344864 in the rabbit saphenous vein (RSV), a model for coronary and cerebral vasoconstrictor activity. Proceedings of the 4th IUPHAR satellite meeting on Serotonin, 23-25th July, Rotterdam, 1998:38.Google Scholar
44. Hoyer, D, Clarke, DE, Fozard, JR, et al. The IUPHAR classification of receptors for 5-hydroxytriptamine (serotonin). Pharmacol Rev 1994;46:157204.Google Scholar
45. Silberstein, SD. The pharmacology of ergotamine and dihydroergotamine. Headache 1997;37(suppl. 1) S15–S25.Google ScholarPubMed
46. Martin, GR, Rohdes, P, Mills, A. Autoradiographic mapping of receptors and recognition sites for established and putative antimigraine drugs. In: Edvinsson, L, ed, Migraine and Headache Pathophysiology. London: Martin Dunitz, 1999:6380.Google Scholar
47. Pauwels, PJ, Tardif, S, Palmier, C, Wurch, T, Colpaert, FC. How efficacious are 5-HT1B/1D receptor ligands: an answer from GTPgS binding studies with stably transfected C6-glial cell lines. Neuropharmacology 1997;36: 499512.Google Scholar
48. Longmore, J, Dowson, AJ, Hill, RG. Current Opinion in CPNS Investigational Drugs 1999;1:3953.Google Scholar
49. Shepheard, SL, Williamson, DJ, Beer, MS, Hill, RG, Hargreaves, RJ. Differential effects of 5-HT1B/1D receptor agonists on neurogenic dural plasma extravasation and vasodilation in anaesthetized rats. Neuropharmacology 1997;36: 525533.CrossRefGoogle Scholar
50. Williamson, DJ, Hargreaves, RJ, Hill, RG, Shepheard, SL. Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on dural vessel diameter in the anaesthetized rat. Cephalalgia 1997;17:518524.Google Scholar
51. Kaube, H, Hoskin, KL, Goadsby, PJ. Inhibition by sumatriptan of central trigeminal neurones only after blood-brain barrier disruption. Br J Pharmacol 1993;109:788792.Google Scholar
52. Cumberbatch, MJ, Hill, RG, Hargreaves, RJ. Rizatriptan has central antinociceptive effects against durally evoked responses. Eur J Pharmacol 1997;328:3740.Google Scholar
53. Cumberbatch, MJ, Hill, RG, Hargreaves, RJ. Differential effects of naratriptan on spinal versus trigeminal nociceptive responses. Cephalalgia 1997;17:381.Google Scholar
54. Tfelt-Hansen, P, Teall, J, Rodriguez, F, et al. Oral rizatriptan versus oral sumatriptan: a direct comparative study in the acute treatment of migraine. Headache 1998;38:748755.Google Scholar
55. Cumberbatch, MJ, Hill, RG, Hargreaves, RJ. The effects of 5-HT1A, 5-HT1B and 5-HT1D receptor agonists on trigeminal nociceptive neurotransmission in anesthetized rats. Eur J Pharmacol 1998; 362:4346.CrossRefGoogle Scholar
56. Connor, HE, Fenuik, W, Humphrey, PPA. 5-Hydroxytryptamine contracts human coronary arteries predominantly via 5-HT2 receptor activation. Eur J Pharmacol 1989;161:9194.Google Scholar
57. MaassenVanDenBrink, A, Reekers, M, Bax, WA, Ferrari, MD, Saxena, PR. Coronary side-effect potential of current and prospective anti-migraine drugs. Circulation 1998;98:2530.Google Scholar
58. Longmore, J, Hargreaves, RJ, Boulanger, CM, et al. Comparison of the vasoconstrictor properties of the 5-HT1D receptor agonists rizatriptan (MK-462) and sumatriptan in human isolated coronary artery: outcome of two independent studies using different experimental protocols. Functional Neurology 1997;12:19.Google Scholar
59. Hargreaves, RJ, Williamson, DJ, Shepheard, SL. Neurogenic inflammation: relation to novel antimigraine drugs. In: Edvinsson, L, ed. Migraine and Headache Pathophysiology. London: Martin Dunitz, 1999:93102.Google Scholar
60. Shepheard, SL, Williamson, DJ, Hill, RG, Hargreaves, RJ. The nonpeptide neurokinin1 receptor antagonists RP67580 blocks neurogenic plasma extravasation in the dura mater of rats. Br J Pharmacol 1993;108:1112.Google Scholar
61. Williamson, DJ, Shepheard, SL, Hill, RG, Hargreaves, RJ. The novel anti-migraine agent rizatriptan inhibits neurogenic dural vaso-dilation and extravasation. Eur J Pharmacol 1997;328: 6164.Google Scholar
62. Maura, G, Marcoli, M, Tortarolo, M, Andrioli, GC, Raiteri, M. Glutamate release in human cerebral cortex and its modulation by 5-hydroxytriptamine acting at h5-HT1D receptors. Br J Pharmacol 1998;123:4550.Google Scholar
63. Pregenzer, JF, Alberts, GL, Im, WB, et al. Differential pharmacology between the guinea-pig and the gorilla 5-HT1D receptor as probed with isochromans (5-HT1D-selective ligands). Br J Pharmacol 1999; 127:468472.Google Scholar
64. Johnson, KW, Schaus, JM, Durkin, MM, et al. 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs. NeuroReport 1997;8:22372240 Google Scholar
65. Schaus, JM, Audia, JE, Dressman, BA. LY334370 is a high affinity, selective 5-HT1F receptor agonist. Cephalalgia 1997;17:398.Google Scholar
66. Goldstein, DJ, Roon, KJ, Offen, WW, et al. Migraine treatment with selective 5-HT1F receptor agonist (SSOFRA) LY334370. Cephalagia 1999;19:318 (abstract Proceedings of the 9th Congress of the IHS, Barcelona, Spain, June 1999).Google Scholar
67. Pereira, A, Granier, LA, Vandenhende, F, de Suray, JM, Onkelinx, C. Safety and pharmacokinetics of high doses of LY 334870, a selective serotonin 1F receptor agonist (SSOFRA) during and outside an acute migraine attack. Cephalagia 1999;19:368 (abstract Proceedings of the 9th Congress of the IHS, Barcelona, Spain, June 1999).Google Scholar