Published online by Cambridge University Press: 24 June 2022
Background: MRI forms an imperative part of the diagnostic and treatment protocol for primary brain tumors and metastasis. Though conventional T1W MRI forms the basis for diagnosis at present, it faces several limitations. Machine learning (ML) algorithms require less expertise and provide better diagnostic accuracy. Methods: A systematic review of PubMed, Google Scholar, and Cochrane databases along with registries through 1980-2021 was done. Original articles in English evaluating Conventional MRI or ML algorithms. Data was extracted by 2 reviewers and meta-analysis was performed using bivariate regression model. Results: The study protocol was registered under PROSPERO. Twelve studies with 1247 participants were included for systematic analysis and three studies for meta-analysis. ML algorithms had better aggregate sensitivity and specificity (80%, 83.14%) than Conventional MRI (81.84%, 74.78%).The pooled sensitivity, specificity, DOR for the studies were 0.926 (95% CI, 0.840-0.926), 0.991 (95% CI, 0.955-0.998) and 1446.946 (312.634-6692.646) with AUC=0.904 under HSROC. On subgroup analysis, MRS and Random Forest Model had highest sensitivity and specificity (100%,100%;100%,100%), DSC MRI and Deep Neural Network had highest AUC (0.98,0.986). Conclusions: ML algorithm has superior diagnostic performance and faster diagnostic capability once trained than conventional imaging for brain tumors. It has immense potential to be the standard of care in the future.