Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T11:53:01.077Z Has data issue: false hasContentIssue false

Oral Lecithin and Linoleic Acid in Friedreich’s Ataxia: III. Biochemical Results

Published online by Cambridge University Press:  18 September 2015

S.B. Melancon
Affiliation:
Le centre de recherche pédiatrique, Hôpital Sainte-Justine, Université de Montréal
L. Dallaire
Affiliation:
Le centre de recherche pédiatrique, Hôpital Sainte-Justine, Université de Montréal
M. Potier
Affiliation:
Le centre de recherche pédiatrique, Hôpital Sainte-Justine, Université de Montréal
J. Cousineau
Affiliation:
Le centre de recherche pédiatrique, Hôpital Sainte-Justine, Université de Montréal
M. Vanasse
Affiliation:
Le centre de recherche pédiatrique, Hôpital Sainte-Justine, Université de Montréal
G. Geoffroy
Affiliation:
Le centre de recherche pédiatrique, Hôpital Sainte-Justine, Université de Montréal
G. Fontaine
Affiliation:
Le centre de recherche pédiatrique, Hôpital Sainte-Justine, Université de Montréal
B. Grignon
Affiliation:
Le centre de recherche pédiatrique, Hôpital Sainte-Justine, Université de Montréal
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lecithin and sqfflower oil brought about the same changes in serum LAD activity and kinetics in patients with Friedreich’s Ataxia as in controls when results of this double-blind crossover study were analyzed according to group assignation. According to functional stages, pretrial LAD activity decreased with advancing severity while Km for lipoamide increased. Lecithin and sqfflower oil supplements corrected the elevated Km for lipoamide but produced a further reduction in LAD activity. These changes may have been due to the increased intake of linoleic acid, a precursor of lipoic acid, which is present in high percentage in both lecithin and safflower oil. Results of the biochemical study thus agreed with the clinical data gathered during the course of the one-year trial in suggesting that linoleic acid may well have been the active factor through which biochemical and clinical improvement was previously observed in patients with Friedreich’s Ataxia supplemented with lecithin.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1982

References

REFERENCES

Barbeau, A. (1980). Friedreich’s Ataxia. An overview of the Physiopathology. Can. J. Neurol. Sci. 7:455468.CrossRefGoogle ScholarPubMed
Carreau, J.P., Lapous, D. and Poulin, J. (1977). Signification des acides gras essentiels dans le métabolisme intermédiaire. Hypothèse sur la synthèse de l’acide lipoique. Biochimie 59: 487496.Google Scholar
Kark, R.A.P., Blass, J.P. and Engel, W.K. (1974). Pyruvate Oxidation in Neuromuscular Diseases: Evidence of Genetic Defect in Two Families in the Clinical Syndrome of Friedreich’s Ataxia. Neurology 24: 964971.CrossRefGoogle ScholarPubMed
Kark, R.A.P., Rodriguez-Budelli, M. and Blass, J.P. (1978). Evidence for a primary defect of lipoamide dehydrogenase in Friedreich’s Ataxia. In Kark, R.A.P., Rosenberg, R.N. and Schutt, L.J., Eds. Advances in Neurology, Vol. 21: 163180, Raven Press, New York.Google Scholar
Kark, R.A.P. and Rodriguez-Budelli, M. (1979). Clinical correlation of partial deficiency of lipoamide dehydrogenase. Neurology 29: 10061013.CrossRefGoogle ScholarPubMed
Kark, R.A.P., Rodriguez-Budelli, M., Purlman, S., Gulley, W.F. and Torok, K. (1980). Preclinical diagnosis and carrier detection in ataxia associated with abnormalities of lipoamide dehydrogenase. Neurology 30: 502508.CrossRefGoogle ScholarPubMed
Langley, D. and Guest, J.R. (1977). Biochemical genetics of the α-keto acid dehydrogenase complexes of Escherichia Coli K12-Isolation and biochemical properties of deletion mutants. J. Genet. Microbiology 99: 263276.CrossRefGoogle Scholar
Melançon, S.B., Potier, M., Dallaire, L., Geoffroy, G., Lemieux, B. and Barbeau, A. (1977). Serum lipoamide dehydrogenase in Friedreich’s Ataxia. Pediat. Res., 11: 460.CrossRefGoogle Scholar
Melançon, S.B., Fontaine, G., Geoffroy, G., Vanasse, M., Dallaire, L. and Potier, M. (1980). Correlation between serum lipoamide dehydrogenase activity and phosphatidylcholine therapy in Friedreich’s Ataxia. Can. J. Neurol. Sci., 7: 413416.CrossRefGoogle ScholarPubMed
Pelley, J.W., Little, G.H., Linn, T.C. and Hall, F.F. (1976). Lipoamide dehydrogenase in serum: A preliminary report. Clin. Chem., 22: 275277.CrossRefGoogle ScholarPubMed
Robinson, B.H., Taylor, J. and Sherwood, W.G. (1977). Deficiency of dihydrolipoyldehydrogenase. A cause of congenital chronic lactic acidosis in infancy. Pediat. Res., 11: 11981202.CrossRefGoogle Scholar
Robinson, B.H., Taylor, J., Kahler, S.G. and Kirkman, H.N. (1981a). Lactic Acidemia, Neurologic Deterioration and Carbohydrate Dependance in a Girl with Dihydrolipoyldehydrogenase deficiency. Eur. J. Pediat., 136:3539.CrossRefGoogle Scholar
Robinson, B.H., Sherwood, W.G., Kahler, S., O’Flynn, M.E. and Nadler, H. (1981b). Lipoamide dehydrogenase deficiency. New Engl. J. Med., 304: 5356.Google ScholarPubMed
Taylor, J., Robinson, B.H. and Sherwood, W.G. (1978). A defect in branched-chain amino acid metabolism in a patient with congenital lactic acidosis due to dihydrolipoyldehydrogenase deficiency. Pediat. Res., 12: 6062.CrossRefGoogle Scholar