Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T15:05:28.192Z Has data issue: false hasContentIssue false

Near-Infrared Spectroscopy Monitored Cerebral Venous Thrombolysis

Published online by Cambridge University Press:  05 August 2019

Timothy F. Witham
Affiliation:
Department of Neurological Surgery, University of Calgary, Calgary
Edwin M. Nemoto
Affiliation:
Department of Neurological Surgery, University of Calgary, Calgary
Charles A. Jungreis
Affiliation:
Division of Neuroradiology, University of Calgary, Calgary
Anthony M. Kaufmann*
Affiliation:
University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania and Department of Clinical Neurosciences, University of Calgary, Calgary
*
Department of Clinical Neurosciences, Foothills Hospital, 12th Floor, 1403 - 29th Street N.W., Calgary, 1403 - 29th Street N.W., Calgary, Alberta, Canada T2N 2T9
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Cerebral venous thrombosis is a clinical entity which is readily diagnosed with the advent of modern imaging techniques. Anticoagulation is now a standard therapy, but more recent treatment strategies have included endovascular thrombolysis. While the endpoint of this intervention both clinically and radiographically has not been defined, noninvasive monitoring techniques may add further objective measures of treatment response.

Clinical Presentation:

We present a patient with a four day history of worsening headache and papilledema on exam. Superior sagittal, straight, and bilateral transverse sinus thromboses were identified on computed tomography and angiography.

Intervention:

Emergent endovascular thrombolysis by a transvenous approach re-established venous patency and resulted in immediate resolution of the patient's symptoms. Cerebral oximetry by near-infrared spectroscopy was utilized during the procedure, and changes in chromophore concentrations correlated directly with angiographic and clinical resolution of the thrombosis.

Conclusion:

Near-infrared spectroscopy can provide continuous feedback during thrombolytic therapy in cerebral venous thrombosis and may help define endpoints of such intervention.

Résumé:

Résumé:<span class='italic'>Introduction:</span>

La thrombose veineuse cérébrale est une entité clinique dont le diagnostic est facile depuis l'avènement des techniques modernes d'imagerie. L'anticoagulation est maintenant le traitement standard, mais il existe des stratégies de traitement plus récentes, dont la thrombolyse endovasculaire. Bien qu'au point de vue clinique ou radiologique les critères de succès de cette intervention n'aient pas été définis, les techniques non invasives de suivi peuvent fournir des mesures objectives de la réponse au traitement.

<span class='italic'>Présentation clinique:</span>

Nous présentons le cas d'une patiente qui s'est présentée avec une histoire de céphalée de plus en plus sévère depuis quatre jours et un oedème papillaire. Des thromboses du sinus longitudinal supérieur, du sinus droit et des sinus latéraux ont été identifiées à la tomodensitométrie et à l'angiographie.

<span class='italic'>Intervention:</span>

Une thrombolyse endovasculaire d'urgence par voie endoveineuse a réétabli la perméabilité veineuse et amené une résolution immédiate des symptômes. L'oxymétrie cérébrale par spectroscopie de proche infrarouge a été utilisée pendant l'intervention et les changements de concentrations chromophores étaient en corrélation directe avec la résolution angiographique et clinique de la thrombose.

<span class='italic'>Conclusion:</span>

Dans la thrombose veineuse cérébrale, la spectroscopie de proche infrarouge peut fournir des informations continues pendant la thrombolyse et peut aider à définir les critères de succès de telles interventions.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

1. Spearman, MP, Jungreis, CA, Welmer, JJ, Gerszten, PC, Welch, WC. Endovascular thrombolysis in deep cerebral venous thrombosis. Am J Neuroradiol 1997; 18: 502506.Google Scholar
2. Barrett, HJM, Hyland, H. Non-infective venous thrombosis. Brain 1953; 76: 3649.Google Scholar
3. Garcin, R, Pestel, M. Thrombophiebites cerebrales. Paris: Franie, 1949; Masson, K..Google Scholar
4. Kalbag, RM, Woolf, AL. Cerebral Venous Thrombosis. London,UK: Oxford University Press, 1967.Google Scholar
5. Krayenbuhl, H. Cerebral venous and sinus thrombosis. Clin Neuro-surg 1967; 14: 124.Google Scholar
6. Amen, A, Bousser, MG. Cerebral venous thrombosis. Brain 1953; 76: 3649.Google Scholar
7. Bousser, MG, Chiras, J, Bones, J, Castaigne, P. Cerebral venous thrombosis: a review of 38 cases. Stroke 1985; 16: 199213.Google Scholar
8. Thron, A, Wessel, K, Linden, D, Schroth, G, Dichgans, J. Superior saginal sinus thrombosis: neuroradiological evaluation and clinical findings. J Neurol 1986; 233: 283288.Google Scholar
9. Virapongse, C, Cazenave, C, Quisling, R, Sarwara, M, Hunter, S. The empty delta sign: frequency and significance in 76 cases of dural sinus thrombosis. Radiology 1987; 162: 779785.Google Scholar
10. Preter, M, Tzourio, C, Amen, A, Bouser, MG. Long-term prognosis is cerebral venous thrombosis: follow-up of 77 patients. Stroke 1996; 27: 243246.Google Scholar
11. Svensson, PJ, Dahiback, B. Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 1995; 330: 517522.Google Scholar
12. Gettelfinger, DM, Kolnnen, F. Superior sagittal sinus thrombosis. Arch Neurol 1977; 34: 26.Google Scholar
13. Alexander, LF, Yamamoto, Y, Ayoubi, S, Al-Mefly, O, Smith, RR. Efficacy of tissue plasminogen activator in the lysis of thrombosis of the cerebral venous sinus. Neurosurgery 1990; 26: 559564.Google Scholar
14. Barnwell, SL, Higashida, RT, Halback, BB, Dowd, CF, Hieshima, GB. Direct endovascular thrombolytic therapy for dural sinus thrombosis. Neurosurgery 1991; 28: 135142.Google Scholar
15. Higashida, RT, Helmer, F, Halbach, BB, Heishima, GB. Direct throm-bolytic therapy for superior sagittal sinus thrombosis. Am J Neu-roradiol 1989; 10: 5456.Google Scholar
16. Manthous, CA, Chen, H. Case report: treatment of superior sagittal sinus thrombosis with urokinase. Conn Med 1992; 56: 529530.Google Scholar
17. Persson, L, Lilisa, A. Extensive dural sinus thrombosis treated by surgical removal and local streptokinase infusion. Neurosurgery 1990; 26: 117121.Google Scholar
18. Smith, TP, Higashida, RT, Bainwell, SL, et al. Treatment of dural sinus thrombosis by urokinase infusion. Am J Neuroradiol 1994; 15: 801807.Google Scholar
19. Tsai, FY, Higashida, RT, Matovich, V, Alfieri, K. Acute thrombosis of the intracranial dural sinus: direct rhombolytic treatment. Am J Neuroradiol 1992; 13: 11371141.Google Scholar
20. Bertina, RM, Koeleman, BPC, Koster, T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 6467.Google Scholar
21. Deschiens, MA, Conard, J, Horellou, MH, et al. Coagulation studies,factor V Leiden, and anticardiolipin antibodies in 40 cases of cerebral venous thrombosis. Stroke 1996; 27: 17241730.Google Scholar
22. Martinelli, I, Landi, G, Merati, G, et al. Factor V gene mutation is a risk factor for cerebral venous thrombosis. Thromb Haemost 1996; 75: 393394.Google Scholar
23. Zuber, M, Toulon, P, Marnet, L, Mas, JL. Factor V Leiden mutation in cerebral venous thrombosis. Stroke 1996; 27: 17211723.Google Scholar
24. Jobsis, FF. Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977; 198: 12641267.Google Scholar
25. Cope, M. The development of a near infrared spectroscopy system and its application for non-invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant. (PhD thesis). London: Univ College. London, 1991.Google Scholar
26. Brazy, JE, Lewis, DV, Mitnick, MH, Jobsis, FF. Non-invasive moni-toring of cerebral oxygenation in preterm infants: preliminary observations. Pediatrics 1985; 75: 217225.Google Scholar
27. Brazy, JE, Lewis, DV. Changes in cerebral blood volume and cytochrome aa3 during hypotensive peaks in preterm infants. Pediatrics 1986; 108: 983987.Google Scholar
28. Brazy, JE, Lewis, DV, Mitnick, MH, Jobsis, FF. Monitoring of cere-bral oxygenation in the intensive care nursery. Adv Exp Med Biol 1986; 191: 843848.Google Scholar
29. Ferrari, M, DeMarchis, C, Gianini, I, et al. Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy. Adv Fxp Med Bio 1986; 200: 203212.Google Scholar
30. Elwell, CF, Cope, M, Edwards, AD, et al. Quantification of adustcerebral hemodynamics by near infrared spectroscopy. J Applied Physiol 1994; 77: 27532760.Google Scholar
31. Fox, FJ, Harme, MH, Mitnick, MH, Jobsis, FF. Non-invasive monitor-ing of cerebral oxygen sufficiency during general anesthesia. Anesthesiology 1982; 57: A160.Google Scholar
32. Hampson, NB, Camporesi, FM, Stolp, BW, et al. Cerebral oxygen availability by MR spectroscopy during transient hypoxia in humans. J Applied Physiol 1990; 69: 907913.Google Scholar
33. Kirkpatrick, PJ, Smielewski, P, Whitfield, PC, et al. An observation study of MRS during carotid endarterectomy. J Neurosurg 1995; 82: 756763.Google Scholar
34. Owen-Reece, H, Fiwell, CF, Goldstone, J, et al. Use of near infrared spectroscopy ∼TRS) to investigate the effect of alternating arterial carbon dioxide tension on cerebral haemodynamics during general anesthesia. Adv Fxp Med Biol 1995; 361: 475482.Google Scholar
35. Gopinath, SP, Robertson, CS, Contant, F, Narayan, RH. Early detec-tion of delayed traumatic intracranial hematomas using near-infrared spectroscopy. J Neurosurg 1995; 83: 438444.Google Scholar
36. Robertson, CS, Gopinath, SP, Chance, B. A new application for near-infrared spectroscopy: detection of delayed intracranial hematomas after head injury. J Neurotrauma 1995; 12: 591600.Google Scholar
37. Koster, FR, Rosendaal, FR, De Ronde, H, et al. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet 1993; 342: 15031506.Google Scholar
38. Dahlback, B, Carlsson, M, Svensson, PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a co-factor to activated protein C. Proc Natl Acad Sci USA 1993; 90: 10041008.Google Scholar
39. Dulli, DA, Luzzio, CC, Williams, EC, Schutta, HS. Cerebral venous thrombosis and activated protein C resistance. Stroke 1996; 27: 17311733.Google Scholar
40. Ridker, PM, Hennekens, CH, Lindpainter, K, et al. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke and venous thrombosis in apparently healthymen. N Engl J Med 1995; 332: 912917.Google Scholar
41. Rosendaal, FR, Koster, T, Vandenbroucke, JP, Reitsma, PH. High-risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 1995; 85: 15041508.Google Scholar
42. Svensson, PJ, Dahlback, B. Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 1994; 330: 517522.Google Scholar
43. Vandenbroucke, JP, Koster, T, Briet, F, et al. Increased risk of venous thrombosis in oral contraceptive users who are carriers of factor V Leiden. Lancet 1994; 244: 14531457.Google Scholar