Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-21T07:55:59.550Z Has data issue: false hasContentIssue false

Multimodal Evoked Potentials of Kennedy's Disease

Published online by Cambridge University Press:  02 December 2014

Tsu-Hsien Lai
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Bing-Wen Soong
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Jen-Tse Chen
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Yen-Yu Chen
Affiliation:
Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
Kuan-Lin Lai
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Zin-An Wu
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Kwong-Kum Liao
Affiliation:
Department of Neurology, Taipei Veterans General Hospital
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Kennedy's disease (KD) is an X-linked recessive polyglutamine disease. Traditionally, it is a lower motor neuron syndrome with additional features such as gynecomastia and tremor. Sensory symptoms are minimal if ever present. We used multimodal evoked potential (EPs) tests to study the distribution of the involvement of the disease.

Methods:

Visual, brainstem auditory, somatosensory and motor EPs were studied in six KD patients. All of them had typical presentations and had been proved genetically.

Results:

Abnormal findings were noted as follows: prolonged peak latencies of visual EPs, increased hearing threshold level, inconsistent brainstem auditory EPs, decreased amplitudes of cortical potentials of somatosensory EPs, and increased motor threshold to transcranial magnetic stimulation.

Conclusions:

Our multimodal EP studies showed that KD involved multiple levels of the nervous system. It implies the widespread effects of the mutant androgen receptors.

Résumé:

RÉSUMÉ:

Potentiels évoqués multimodaux dans la maladie de Kennedy.

Contexte:

La maladie de Kennedy (MK) est une maladie récessive à polyglutamines, liée au chromosome X. Il s'agit traditionnellement d'un syndrome du neurone moteur périphérique accompagné d'autres manifestations comme de la gynécomastie et du tremblement. Si des symptômes sensitifs sont présents, ils sont minimes. Nous avons utilisé les potentiels évoqués (PÉs) multimodaux pour étudier la distribution de l'atteinte dans cette maladie. Méthodes : Nous avons étudié les PÉs visuels, les PÉs auditifs du tronc cérébral, les PÉs somesthésiques et les PÉs moteurs chez six patients atteints de MK. Chez tous, le tableau était typique et la maladie avait été confirmée par un test génétique. Résultats : Les anomalies suivantes ont été constatées : des latences prolongées du pic des PÉs visuels, un seuil auditif plus élevé, des PÉs auditifs du tronc cérébral discordants, une amplitude diminuée des potentiels corticaux des PÉs somesthésiques et un seuil moteur plus élevé à la stimulation magnétique transcrânienne. Conclusions : Nos études des PÉs multimodaux démontre que plusieurs niveaux du système nerveux sont atteints dans la MK, ce qui témoigne des effets diffus des récepteurs androgéniques mutants.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Harding, AE, Thomas, PK, Baraitser, M, Bradbury, PG, Morgan-Hughes, JA, Ponsford, JR. X-linked recessive bulbospinal neuronopathy: a report of ten cases. J Neurol Neurosurg Psychiatry. 1982;45(11):10129.CrossRefGoogle ScholarPubMed
2. LaSpada, AR, Roling, DB, Harding, AE, Warner, CL, Spiegel, R, Hausmanowa-Petrusewicz, I, et al. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in x-linked spinal and bulbar muscular atrophy. Nat Genet. 1992;2(4):3014.Google Scholar
3. Sperfeld, AD, Karitzky, J, Brummer, D, Schreiber, H, Haussler, J, Ludolph, AC, et al. X-linked bulbospinal neuronopathy: Kennedy disease. Arch Neurol. 2002;59(12):19216.Google Scholar
4. Anannontsak, A, Massakulpan, P, Aksaranugraha, S, Phanthumchinda, K. Somatosensory evoked potentials in X-linked recessive bulbospinal neuronopathy: a case demonstration. Electromyogra Clin Neurophysiol. 1999;39(7):3936.Google Scholar
5. Antonini, G, Gragnani, F, Romaniello, A, Pennisi, EM, Morino, S, Ceschin, V, et al. Sensory involvement in spinal-bulbar muscular atrophy (Kennedy’s disease). Muscle Nerve. 2000;23(2):2528.Google Scholar
6. Kachi, T, Sobue, G, Sobue, I. Central motor and sensory conduction in X-linked recessive bulbospinal neuronopathy. J Neurol Neurosurg Psychiatry. 1992;55(5):3947.Google Scholar
7. Polo, A, Teatini, F, D’Anna, S, Manganotti, P, Salviati, A, Dallapiccola, B, et al. Sensory involvement in X-linked spino-bulbar muscular atrophy (Kennedy’s disease): an electro-physiological study. J Neurol. 1996;243(5):38892.Google Scholar
8. Celesia, GG, Brigell, MG. Recommended standards for pattern electroretinograms and visual evoked potentials. Electroenceph Clin Neurophysiol Suppl. 1999;52:5367.Google Scholar
9. Pratt, H, Aminoff, MR, Nuwer, MR, Starr, A. Short-latency auditory evoked potentials. Electroenceph Clin Neurophysiol Suppl. 1999;52:6978.Google Scholar
10. Mauguière, F, Allison, T, Babiloni, C, Buchner, H, Eisen, AA, Goodin, SJ, et al. Somatosensory evoked potentials. Electroenceph Clin Neurophysiol Suppl. 1999;52:7990.Google Scholar
11. Rothwell, JC, Hallett, M, ÄA, Berardelli, Eisen, A, Rossini, PM, Paulus, W. Magnetic stimulation: motor evoked potentials. Electroenceph Clin Neurophysiol. 1999;S52:97103.Google Scholar
12. Gelinas, D, Callard, GV. Immunolocalization of aromatase- and androgen receptor-positive neurons in the goldfish brain. Gen Comp Endocrinol. 1997;106(2):15568.Google Scholar
13. Adachi, H, Katsuno, M, Minamiyama, M, Waza, M, Sang, C, Nakagomi, Y, et al. Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain. 2005;128(Pt 3):65970.Google Scholar
14. Agapova, OA, Kaufman, PL, Hernandez, MR. Androgen receptor and NFkB expression in human normal and glaucomatous optic nerve head astrocytes in vitro and in experimental glaucoma. Exp Eye Res. 2006;82(6):10539.CrossRefGoogle ScholarPubMed
15. Nunez, JL, Huppenbauer, CB, McAbee, MD, Juraska, JM, DonCarlos, LL. Androgen receptor expression in the developing male and female rat visual and prefrontal cortex. J Neurobiol. 2003;56(3):293302.CrossRefGoogle ScholarPubMed
16. Cheliout-Heraut, F, Barois, A, Urtizberea, A, Viollet, L, Estournet-Mathiaud, B. Evoked potentials in spinal muscular atrophy. J Child Neurol. 2003;18(6):38390.Google Scholar
17. Simerly, RB, Chang, C, Muramatsu, M, Swanson, LW. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol. 1990;294(1):7695.Google Scholar
18. Buecking, A, Pfister, R. Sensory ataxia as the initial clinical symptom in X-linked recessive bulbospinal neuronopathy. J Neurol Neurosurg Psychiatry. 2000;69(2):277.Google Scholar
19. Li, M, Sobue, G, Doyu, M, Mukai, E, Hasizume, Y, Mitsuma, T. Primary sensory neurons in X-linked recessive bulbospinal neuropathy: histopathology and androgen receptor gene expression. Muscle Nerve. 1995;18(3):3018.Google Scholar
20. Attarian, S, Azulay, J-Ph, Lardillier, D, Verschueren, A, Pouget, J. Transcranial magnetic stimulation in lower motor neuron disease. Clin Neurophysiol. 2005;116(1):3542.Google Scholar
21. Sobue, G, Hashizume, Y, Mukai, E, Hirayama, M, Mitsuma, T, Takahashi, A. X-linked recessive bulbospinal neuronopathy: a clinical pathological study. Brain. 1989;112(Pt 1):20932.Google Scholar
22. Nagashima, T, Seko, K, Hirose, K, Mannen, T, Yoshimura, S, Arima, R, et al. Familial bulbo-spinal muscular atrophy associated with testicular atrophy and sensory neuropathy. J Neurol Sci. 1988;87(2-3):14152.Google Scholar
23. Shaw, PJ, Thagesen, H, Tomkins, J, Slade, JY, Usher, P, Jackson, A, et al. Kennedy’s disease: unusual molecular pathologic and clinical features. Neurology. 1998;51(1):2525.CrossRefGoogle ScholarPubMed
24. Pachatz, C, Terracciano, C, Desiato, MT, Orlacchio, A, Mori, F, Rocchi, C, et al. Upper motor neuron involvement in X-linked recessive bulbospinal muscular atrophy. Clin Neurophysiol. 2007;118(2):2628.CrossRefGoogle ScholarPubMed
25. Karitzky, J, Block, W, Mellies, JK, Traber, F, Sperfeld, A, Schild, HH, et al. Proton magnetic resonance spectroscopy in Kennedy syndrome. Arch Neurol. 1999;56(12):146571.CrossRefGoogle ScholarPubMed
26. Kessler, H, Prudlo, J, Kraft, S, Supprian, T. Dementia of frontal lobe type in Kennedy’s disease. Amyotroph Lateral Scler Other Motor Neuron Disord. 2005;6(4):2503.Google Scholar
27. Soragna, D, Messa, C, Mochi, M, Alfonsi, E, Manni, R, Galimberti, CA, et al. Dopaminergic pathways involvement in Kennedy’s disease: neurophysiological and [123I]ß-CIT SPECT findings. J Neurol. 2001;248(8):7102.Google Scholar
28. Jones, SJ. Clinical applications of short-latency somatosensory evoked potentials. Ann N Y Acad Sci. 1982;388:36987.Google Scholar
29. Halliday, AM, McDonald, WI, Mushin, J. Visual evoked response in diagnosis of multiple sclerosis. Br Med J. 1973;4(5893):6614.Google Scholar
30. Pierelli, F, Garrubba, C, Tilia, G, Parisi, L, Fattapposta, F, Pozzessere, G, et al. Multimodal evoked potentials in HIV-1-seropositive patients: relationship between the immune impairment and the neurophysiological function. Acta Neurol Scand. 1996;93(4):26671.CrossRefGoogle ScholarPubMed