Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T23:01:41.267Z Has data issue: false hasContentIssue false

Motion Analysis of Normal Patellar Tendon Reflex

Published online by Cambridge University Press:  23 September 2014

Lai Kuan Tham*
Affiliation:
Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
Noor Azuan Abu Osman
Affiliation:
Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
Wan Abu Bakar Wan Abas
Affiliation:
Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
Kheng Seang Lim
Affiliation:
Division of Neurology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
*
Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Reflex assessment, an essential element in the investigation of the motor system, is currently assessed through qualitative description, which lacks of normal values in the healthy population. This study quantified the amplitude and latency of patellar tendon reflex in normal subjects using motion analysis to determine the factors affecting the reflex amplitude.

Methods:

100 healthy volunteers were recruited for patellar tendon reflex assessments which were recorded using a motion analysis system. Different levels of input strength were exerted during the experiments.

Results:

A linear relationship was found between reflex input and reflex amplitude (r = 0.50, P <0.001). The left knee was found to exhibit 26.3% higher reflex amplitude than the right (P <0.001). The Jendrassik manoeuvre significantly increased reflex amplitude by 34.3% (P = 0.001); the effect was especially prominent in subjects with weak reflex response. Reflex latency normality data were established, which showed a gradual reduction with increasing input strength.

Conclusion:

The quantitative normality data and findings showed that the present method has great potential to objectively quantify deep tendon reflexes.

Résumé

RÉSUMÉ Contexte:

L'évaluation des réflexes, un élément essentiel de l'examen du système moteur, est effectué actuellement par une description qualitative des réflexes pour laquelle il n'existe pas de valeurs normales dans la population en bonne santé. Cette étude a quantifié l'amplitude et la latence du réflexe rotulien chez des sujets normaux au moyen d'une analyse du mouvement pour déterminer les facteurs qui influencent l'amplitude du réflexe.

Méthode:

100 volontaires sains ont été recrutés afin de procéder à des évaluations du réflexe rotulien qui a été enregistré par un système d'analyse du mouvement. Différents niveaux de force de stimulation ont été exercés pendant les expériences.

Résultats:

Nous avons constaté qu'il existe une relation linéaire entre le stimulus et l'amplitude du réflexe (r = 0,50 ; p < 0,001). L'amplitude du réflexe du genou gauche était de 26,3% supérieure à celle du genou droit (p < 0,001). La manœuvre de Jandrassik augmentait significativement l'amplitude, soit de 34,3% (p = 0,001). Cet effet était particulièrement évident chez les sujets dont la réponse était faible. Nous avons recueilli des données sur le temps de latence normal qui diminuait graduellement à mesure que la force du stimulus augmentait.

Conclusion:

Ces données quantitatives sur le réflexe normal et ces constatations démontrent que la méthode que nous avons utilisée présente un excellent potentiel pour quantifier objectivement les réflexes ostéo-tendineux.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Porter, NC, Weiner, WJ. The neurologic examination. In: Weiner WJ, Goetz CG, editors. Neurology for the non-neurologist. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 120.Google Scholar
2. Campbell, WW. DeJong's the neurologic examination. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.Google Scholar
3. Walker, HK. Deep tendon reflexes. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: The history, physical and laboratory examinations. 3rd ed. London: Butterworth Publishers; 1990.Google Scholar
4. Toft, E, Sinkjaer, T, Espersen, GT. Quantitation of the stretch reflex. Technical aspects and clinical applications. Acta Neurol Scand. 1989;79:38490.Google Scholar
5. Dick, JPR. The deep tendon and the abdominal reflexes. J Neurol Neurosurg Psychiatry. 2003;74(2):1503.Google Scholar
6. Stam, J, Tan, KM. Tendon reflex variability and method of stimulation. Electromyogr Clin Neurophysiol. 1987;67(5):4637.Google Scholar
7. Hunt, CC. Temporal fluctuation in excitability of spinal motoneurones and its influence on monosynaptic reflex responses. J Gen Physiol. 1955;38(6):80111.Google Scholar
8. Rudomin, P, Dutton, H. Effects of conditioning afferent volleys on variability of monosynaptic responses of motorneurones. J Neurophysiol. 1969;32(2):14057.Google Scholar
9. Carel, RS, Korczyn, AD, Hochberg, Y. Age and sex dependency of the Achilles tendon reflex. The American Journal of the Medical Sciences. 1979;278(1):5763.Google Scholar
10. Lim, KS, Bong, YZ, Chaw, YL, et al. Wide range of normality in deep tendon reflexes in the normal population. Neurol Asia. 2009;14:215.Google Scholar
11. Frijns, CJ, Laman, DM, van Duijn, MA, van Duijn, H. Normal values of patellar and ankle tendon reflex latencies. Clin Neurol Neurosurg. 1997;99(1):316.Google Scholar
12. Ogawa, Y, Hirata, M, Okayama, A, Ichikawa, YE, Goto, S. Latency of the Achilles tendon reflex for detection of reduced functions of the peripheral nervous system in workers exposed to lead. Br J Ind Med. 1993;50:22933.Google Scholar
13. Stam, J, van Crevel, H. Measurement of tendon reflexes by surface electromyography in normal subjects. J Neurol. 1989;236(4):2317.Google Scholar
14. Husemann, U, Behse, F. Reflex time of the knee jerk in controls, spasticity, radiculopathy and neuropathy. EEG-EMG. 1993;24 (4):2805.Google Scholar
15. Huang, H, Zhang, L, Rymer, WZ. A computer-controlled electromechanical hammer to quantify tendon reflex. 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1997; Chicago, United States of America; 1997.Google Scholar
16. Simons, DG, Lamonte, RJ. Automated system for the measurement of reflex responses to patellar tendon tap in man. Am J Phys Med. 1971;50(2):729.Google Scholar
17. LeMoyne, R, Dabiri, F, Jafari, R. Quantified deep tendon reflex device, second generation. J Mech Med Biol. 2008;8:7585.Google Scholar
18. Jendrassik, E. Beiträge zur Lehre von der Sehnen-Reflexen Dtsch Arch Klin Med. 1883;33:17799.Google Scholar
19. Péréon, Y, Nguyen The Tich S, Fournier, E, Genet, R, Guihéneuc, P. Electrophysiological recording of deep tendon reflexes: Normative data in children and in adults. Neurophysiol Clin. 2004;34:1319.Google Scholar
20. Kadaba, MP, Ramakrishnan, HK, Wootten, ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8(3):38392.Google Scholar
21. Tham, LK, Abu Osman, NA, Lim, KS, Pingguan-Murphy, B, Wan Abas, WAB, Mohd Zain, N. Investigation to predict patellar tendon reflex using motion analysis technique. Med Eng Phys. 2011;33(4):40710.Google Scholar
22. Gottlieb, GL, Agarwal, GC. Response to sudden torques about ankle in man: myotatic reflex. J Neurophysiol. 1979;42:91106.Google Scholar
23. Wadman, WJ, Boerhout, W, Denier van der Gon, JJ. Responses of the arm movement control system to force impulses. J Hum Mov Stud. 1980;6:280302.Google Scholar
24. Mamizuka, N, Sakane, M, Kaneoka, K, Hori, N, Ochiai, N. Kinematic quantitation of the patellar tendon reflex using a tri-axial accelerometer. J Biomech. 2007;40:210711.Google Scholar
25. Marshall, GL, Little, JW. Deep tendon reflexes: A study of quantitative methods. J Spinal Cord Med. 2002;25:949.Google Scholar
26. Zhang, L-Q, Huang, , Silwa, JA, Rymer, WZ. System identification of tendon reflex dynamics. IEEE Trans Rehabil Eng. 1999;7(2):193203.Google Scholar
27. Zehr, EP, Stein, RB. Interaction of the Jendrássik maneuver with segmental presynaptic inhibition. Exp Brain Res. 1999;124(4):47480.Google Scholar