Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T03:23:18.823Z Has data issue: false hasContentIssue false

Mechanisms Underlying Functional Recovery Following Stroke

Published online by Cambridge University Press:  18 September 2015

Robert G. Lee*
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary
Paul van Donkelaar
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary
*
Faculty of Medicine, Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N4N1
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article reviews recent evidence from animal experiments indicating that there is considerable potential for reorganization of representations and functions in sensory and motor cortex following localized lesions or various manipulations of peripheral target structures. Three major mechanisms for this plastic reorganization are considered: unmasking of existing but functionally inactive pathways, sprouting of fibers from surviving neurons and formation of new synapses, and redundancy of CNS circuitry allowing alternative pathways to take over functions. Studies using positron emission tomography or transcranial magnetic stimulation suggest that similar forms of neuroplasticity may occur in the human brain and could contribute to functional recovery following stroke. The potential therapeutic implications are discussed.

Résumé

Résumé

Nous revoyons les données récentes de l’expérimentation animale indiquant qu’il existe un potentiel considérable de réorganisation des représentations et des fonctions dans le cortex sensitif et moteur suite à des lésions localisées ou à des manipulations variées de structures cibles périphériques. Nous considérons trois mécanismes majeurs de cette réorganisation plastique: la manifestation de voies existantes mais fonctionnellement inactives, le bourgeonnement de fibres à partir de neurones survivants et la formation de nouvelles synapses, et la redondance de circuits du SNC permettant à des voies alternatives de prendre la relève. Des études faites à l’aide de la tomographie par émission de positrons ou de stimulation magnétique transcrânienne suggèrent que des formes analogues de neuroplasticité pourraient exister dans le cerveau humain et pourraient contribuer à la récupération fonctionnelle suite à un accident vasculaire cérébral. Nous discutons des implications thérapeutiques potentielles.

Type
Review Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1995

References

REFERENCES

1. Dumbovy, ML, Bach-y-Rita, P. Clinical observation on recovery from stroke. In: Waxman, SG, ed. Advances in Neurology, Vol.47, Functional Recovery in Neurological Disease. New York: Raven Press, 1988: 265276.Google Scholar
2. Merzenich, MM, Kass, JH, Wall, JT, et al. Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience 1983; 10: 639665.Google Scholar
3. Merzenich, MM, Nelson, RJ, Stryker, MP, et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 1984; 224: 591605.CrossRefGoogle ScholarPubMed
4. Merzenich, MM, Recanzone, G, Jenkins, WM, Allard, TT, Nudo, RJ. Cortical representational plasticity. In: Rakic, P, Singer, W, eds. Neurobiology of Neocortex. New York: Wiley, 1988: 4167.Google Scholar
5. Allard, TT, Clark, SA, Jenkins, WM, Merzenich, MM. Syndactyly results in the emergence of double-digit receptive fields in somatosensory cortex in adult owl monkeys. Soc Neurosci Abstr 1985; 11:965.Google Scholar
6. Clark, SH, Allard, TT, Jenkins, WM, Merzenich, MM. Cortical map reorganization following neurovascular island skin transfers on the hands of adult owl monkeys. Soc Neurosci Abstr 1986; 12: 391.Google Scholar
7. Donoghue, JP, Suner, S, Sanes, JN. Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp Brain Res 1990; 79:492503.Google Scholar
8. Sanes, JN, Suner, S, Donoghue, JP. Dynamic organization of primary motor cortex output to target muscles in adult rats I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp Brain Res 1990; 79: 479491.Google Scholar
9. Cohen, LG, Bandinelli, S, Findlay, TW, Hallett, M. Motor reorganization after upper limb amputation in man: a study with focal magnetic stimulation. Brain 1991; 114: 615627.CrossRefGoogle Scholar
10. Cohen, LG, Brasil-Neto, JP, Pascual-Leone, A, Hallett, M. Plasticity of cortical motor output organization following deafferentation, cerebral lesions, and skill acquisition. In: Devinsky, O, Beric, A, Dogali, M, eds. Electrical and Magnetic Stimulation of the Brain and Spinal Cord. New York: Raven Press, 1993: 187200.Google Scholar
11. Brasil-Neto, JP, Cohen, LG, Pascual-Leone, A, et al. Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm. Neurology 1992; 42: 13021306.Google Scholar
12. Jenkins, WM, Merzenich, MM. Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. In: Seil, FJ, Herbert, E, Carlson, BM, eds. Progress in Brain Research 1987; 71: 249266.CrossRefGoogle ScholarPubMed
13. Castro-Alamancos, MA, Garcia-Segura, LM, Borrell, J. Transfer of function to a specific area of the cortex after induced recovery from brain damage. Eur J Neurosci 1992; 4: 853863.CrossRefGoogle ScholarPubMed
14. Sagar, SM, Sharp, FR, Curran, T. Expression of c-fos protein in the brain: metabolic mapping at the cellular level. Science 1988; 240: 13281331.Google Scholar
15. Weiller, C, Ramsay, SC, Wise, RJS, Friston, KJ, Frackowiak, RSJ. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 1993; 33: 181189.CrossRefGoogle ScholarPubMed
16. Recanzone, GH, Allard, TT, Jenkins, WM, Merzenich, MM. Receptive-field changes induced by peripheral nerve stimulation in SI of adult cats. J Neurophysiol 1990; 63: 12131225.Google Scholar
17. DeFelipe, J, Conley, M, Jones, EG. Long-range focal collateralization of axons arising from corticocortical cells in monkey sensorimotor cortex. J Neurol Sci 1986; 6: 37493766.Google Scholar
18. Gosh, S, Porter, R. Morphology of pyramidal neurones in monkey motor cortex and the synaptic actions of their intracortical axon collaterals. J Physiol 1988; 400: 593615.Google Scholar
19. Jacobs, KM, Donoghue, JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science 1991; 251: 944947.Google Scholar
20. Hendry, SHC, Jones, EG. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature 1986; 320: 750753.Google Scholar
21. Welker, E, Soriano, E, Dorfl, J Van der Loos, H. Plasticity in the barrel cortex of the adult mouse: transient increase of GAD-immunoreactivity following sensory stimulation. Exp Brain Res 1989; 78: 659664.Google Scholar
22. Sanes, JN, Donoghue, JP. Organization and adaptability of muscle representations in primary motor cortex. In: Caminiti, R, Johnson, PB, Burnod, Y, eds. Control of Arm Movement in Space: Neurophysiological and Computational Approaches. Springer-Verlag: Berlin 1992: 103128.Google Scholar
23. Alexander, GE, Crutcher, MD. Functional architecture of the basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990; 13:266271.Google Scholar
24. Strick, PL. Anatomical organization of multiple motor areas in the frontal lobe: Implications for recovery of function. In: Waxman, SG, ed. Advances in Neurology, Vol.47, Functional Recovery in Neurological Disease. New York: Raven Press, 1988: 265276.Google Scholar
25. Kuypers, HGJM. Anatomy of the descending pathways. In: Brooks, VB, ed. Handbook of Physiology. Section 1 : The nervous system. Vol. 2: Motor control, part 1. APA, Bethesda 1981: 597666.CrossRefGoogle Scholar
26. Dum, RP, Strick, PL. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 1991; 11: 667687.Google Scholar
27. Fries, W, Danek, A, Scheidtmann, K, Hamburger, C. Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain 1993; 116: 369382.Google Scholar
28. Aizawa, H, Inase, M, Mushiake, H, Shima, K, Tanji, J. Reorganization of activity in the supplementary motor area associated with motor learning and functional recovery. Exp Brain Res 1991; 84: 668671.CrossRefGoogle ScholarPubMed
29. Davidoff, RA. The pyramidal tract. Neurology 1990; 40: 332339.Google Scholar
30. Benecke, R, Meyer, B-U, Freund, H-J. Reorganisation of descending motor pathways in patients after hemispherectomy and severe hemispheric lesions demonstrated by magnetic brain stimulation. Exp Brain Res 1991; 83: 419426.Google Scholar
31. Colebatch, JG, Gandevia, SC. The distribution of muscular weakness in upper motor neurone lesions affecting the arm. Brain 1989; 112:749763.Google Scholar
32. Jones, RD, Donaldson, IM, Parkin, PJ. Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction. Brain 1989; 112: 113132.Google Scholar
33. Brodal, A. Self-observation and neuro-anatomical considerations after stroke. Brain 1973; 96: 675694.CrossRefGoogle Scholar
34. Fisher, CM. Concerning the mechanism of recovery in stroke hemiplegia. Can J Neurol Sci 1992; 19: 5763.Google Scholar
35. Chollet, F, DiPiero, V, Wise, RJS, et al. The functional anatomy of motor recovery after a stroke in humans: a study with positron emission tomography. Ann Neurol 1991; 29: 6371.CrossRefGoogle ScholarPubMed
36. Weiller, C, Chollet, F, Friston, KJ, Wise, RJS, Frackowiak, RSJ. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992; 31: 463472.Google Scholar
37. Chollet, F, Weiller, C. Imaging recovery of function following brain injury. Current Opinion in Neurobiology 1994; 4: 226230.CrossRefGoogle ScholarPubMed
38. Ferbert, A, Priori, A, Rothwell, JC, et al. Interhemispheric inhibition of the human motor cortex. J Physiol (Lond) 1992; 453: 525546.Google Scholar
39. Carr, LJ, Harrison, LM, Stephens, JA. Evidence for bilateral innervation of certain homologous motoneurone pools in man. J Physiol (Lond) 1994; 475.2: 217227.Google Scholar
40. Wasserman, EM, Pascual-Leone, A, Hallett, M. Cortical motor representation of the ipsilateral hand and arm. Exp Brain Res 1994; 100: 121132.Google Scholar
41. Palmer, E, Ashby, P, Hajek, VE. Ipsilateral fast corticospinal pathways do not account for recovery in stroke. Ann Neurol 1992; 32:519525.Google Scholar
42. Fries, W, Danek, A, Witt, TN. Motor responses after transcranial electrical stimulation of cerebral hemispheres with a degenerated pyramidal tract. Ann Neurol 1991; 29: 646650.Google Scholar
43. Asanuma, H, Keller, A. Neuronal mechanisms of motor learning in mammals. Neuroreport 1991; 2: 217224.CrossRefGoogle ScholarPubMed
44. Aou, S, Woody, CD, Birt, D. Increases in excitability of neurons of the motor cortex of cats after rapid acquisition of eye blink conditioning. J Neurosci 1992; 12: 560569.CrossRefGoogle ScholarPubMed
45. Roland, PE, Larsen, NA, Lassen, N, Skinhoj, E. Supplementary motor area and other cortical areas in the organization of voluntary movements in man. J Neurophysiol 1980; 43: 118136.CrossRefGoogle ScholarPubMed
46. Pascual-Leone, A, Grafman, J, Hallett, M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 1994,263: 12871289.Google Scholar