Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T16:57:25.769Z Has data issue: false hasContentIssue false

Long Term Exposure to Manganese in Rural Well Water Has No Neurological Effects

Published online by Cambridge University Press:  18 September 2015

P. Vieregge*
Affiliation:
Department of Neurology, Medical University of Lübeck, Lübeck
B. Heinzow
Affiliation:
Institute of Environmental Toxicology, Kiel;
G. Korf
Affiliation:
Department of Neurology, Medical University of Lübeck, Lübeck
H.-M. Teichert
Affiliation:
Institute of Medical Statistics and Documentation, Medical University of Lübeck, Lübeck
P. Schleifenbaum
Affiliation:
Public Health Authority of Kreis Herzogtum-Lauenburg, Ratzeburg, Federal Republic of Germany
H.-U. Mösinger
Affiliation:
Department of Neurology, Medical University of Lübeck, Lübeck
*
Department of Neurology, Medical University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background

There is debate on the neurological impact of chronic exposure to Manganese (MN).

Methods

MN burden from rural well water was studied cross-sectionally in two proband cohorts from rural dwellings located in northern Germany. Both cohorts had exposure times for up to 40 years and were separated on the basis of well water MN content. Group A (41 subjects; mean age 57.5 years) was exposed to MN water contents of at least 0.300 mg/l (range 0.300 to 2.160), while group B (74 subjects; mean age 56.9 years) was exposed to concentrations of less than 0.050 mg/1. Both proband groups were homogenous with regard to age, sex, nutritional habits, and drug intake. Neurological assessments by clinical investigators blinded for proband’s exposure status was done using structured questionnaires, standardized neurological examination with assessment of possible Parkinsonian signs by the Columbia University Rating Scale, and instrumental tests of fine motor coordination.

Results

No significant difference in any neurological measure was found between groups. Results were not confounded by demographic and dietary features.

Conclusion

Exposure to high body burden of MN does not result in detectable neurological impairment. Exposure to MN in drinking water does not seem to be a risk factor for idiopathic Parkinson’s disease.

Résumé

Résumé <span class='italic'> <span class='bold'>Introduction</span></span>

Les répercussions neurologiques d’une exposition chronique au manganèse (MN) demeurent une source de controverse.

<span class='italic'> <span class='bold'>Méthodes</span></span>

Nous avons effectué une étude transversale de la charge en MN chez deux cohortes de sujets habitant la campagne dans le nord de l’Allemagne. Chez les individus des deux cohortes, le temps d’exposition pouvait atteindre 40 ans. Le groupe A (41 sujets; 57.5 ans d’âge moyen) avait été exposé à de l’eau dont la teneur en MN était d’au moins 0.300 mg/l (intervalle de 0.300 à 2.160), alors que le groupe B (74 sujets; 56.9 ans d’âge moyen) avait été exposé à des concentrations de moins de 0.050 mg/1. Les deux groupes de sujets étaient homogènes quant à l’âge, au sexe, aux habitudes alimentaires et à la prise de médicaments. Des investigateurs cliniques ignorant le niveau d’exposition des sujets ont effectué une évaluation neurologique au moyen d’un questionnaire structuré, d’un examen neurologique standardisé avec évaluation des signes parkinsoniens au moyen de l’échelle de l’université Columbia lorsque pertinent, ainsi que des épreuves de motricité fine.

<span class='italic'> <span class='bold'>Résultats</span></span>

Nous n’avons pas observé de différence significative pour quelque mesure que ce soit entre les deux groupes. Les résultat n’étaient pas influencés par des particularités démographiques ou alimentaires.

<span class='italic'> <span class='bold'>Conclusions</span></span>

L’exposition à une charge corporelle élevée en MN ne provoque pas de déficit neurologique décelable. L’exposition au MN dans l’eau potable ne semble pas être un facteur de risque de la maladie de Parkinson.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1995

References

REFERENCES

1. Yanagihara, R. Heavy metals and essential minerals in motor neuron disease. In: Rowland, LP, ed. Human Motor Neuron Diseases. New York: Raven Press, 1982: 233247.Google Scholar
2. Editorial. Is aluminium a dementing ion? Lancet 1992; 339: 713714.Google Scholar
3. Barbeau, A, Roy, M, Bernier, G, et al. Ecogenetics of Parkinson’s disease: prevalence and environmental aspects in rural areas. Can J Neurol Sci 1987; 14:3641.CrossRefGoogle ScholarPubMed
4. Rajput, AH, Uitti, R, Stern, W, et al. Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson’s disease. Can J Neurol Sci 1987; 14: 414418.Google Scholar
5. Tanner, CM. The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci 1989; 12: 4954.CrossRefGoogle ScholarPubMed
6. Semchuk, KM, Love, EJ, Lee, RG. Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 1992; 42: 13281335.Google Scholar
7. Jiménez-Jiménez, FJ, Mateo, D, Giménez-Roldán, S. Exposure to well water and pesticides in Parkinson’s disease: a case-control study in the Madrid area. Mov Disord 1992; 7: 149152.Google Scholar
8. Hellenbrand, W, Vieregge, P, Robra, B-P, et al. Die Ätiologie des Morbus Parkinson: Eine epidemiologische Perspektive mit möglichen Implikationen für die Prevention. Nervenarzt 1993; 64: 770786.Google ScholarPubMed
9. Barbeau, A. Manganese and extrapyramidal disorders. Neurotoxicology 1984; 5: 1336.Google ScholarPubMed
10. Aschner, M, Aschner, JL. Manganese neurotoxicity: cellular effects and blood-brain barrier transport. Neurosci Biobehav Rev 1991; 15: 333340.Google Scholar
11. Brouillet, EP, Shinobu, L, McGarvey, U, et al. Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 1993; 120: 8994.Google Scholar
12. Huang, C-C, Chu, N-S, Lu, C-S, et al. Chronic manganese intoxication. Arch Neurol 1989; 46: 11041106.CrossRefGoogle ScholarPubMed
13. Calne, DB, Chu, N-S, Huang, C-C, et al. Manganism and idiopathic parkinsonism: similarities and differences. Neurology 1994; 44: 15831586.Google Scholar
14. Yamada, M, Ohno, S, Okayasu, R, et al. Chronic manganese poisoning: a neuropathological study with determination of manganese distribution in the brain. Acta Neuropathol (Berl) 1986; 70: 273278.CrossRefGoogle ScholarPubMed
15. Uitti, RJ, Rajput, AH, Rozdilsky, B, et al. Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Can J Neurol Sci 1989; 16: 310314.Google Scholar
16. Dexter, DT, Carayon, A, Javoy-Agid, F, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991; 114: 19531975.Google Scholar
17. Saric, M, Markicevic, A, Hrustic, O. Occupational exposure to manganese. Br J Ind Med 1977; 34: 114118.Google Scholar
18. Roels, H, Lauwerys, R, Buchet, J-P, et al. Epidemiological survey among workers exposed to manganese: effects on lung, central nervous system, and some biological indices. Am J Ind Med 1987; 11:307327.Google Scholar
19. Graham, DG. Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinsons’s disease. Neurotoxicology 1984; 5: 8396.Google Scholar
20. Hogstedt, C, Andersson, K, Hane, M. A questionnaire approach to the monitoring of early disturbances in central nervous functions. In: Aitio, A, Rühimaki, V, Vaninio, H, eds. Biological monitoring and surveillance of workers exposed to chemicals. Washington: Hemisphere Publ Corp, 1984; 275287.Google Scholar
21. Yahr, MD, Duvoisin, RC, Senear, MJ, et al. Treatment of parkinsonism with levodopa. Arch Neurol 1969; 21: 343354.CrossRefGoogle ScholarPubMed
22. Schoppe, KJ. Das MLS-Gerät: Ein neuer Testapparat zur Messung feinmotorischer Leistungen. Diagnostica 1974; 20: 4346.Google Scholar
23. Sturm, W, Bussing, A. Ergänzende Normierungsdaten und Retest-Reliabilitatskoeffizienten zur Motorischen Leistungsserie (MLS) nach Schoppe. Diagnostica 1985; 31: 234245.Google Scholar
24. Hallas, DJ, Fells, GS. Determination of manganese in serum and urine by electrothermal atomic absorption spectrometry. Anal Chim Acta 1981; 129:205211.Google Scholar
25. Saric, M. Manganese. In: Friberg, L, Nordberg, GF, Vouk, VB, eds. Handbook on the Toxicology of Metals. Vol II: Specific metals. Amsterdam – New York – Oxford: Elsevier, 1986; 2nd Edition: 354386.Google Scholar
26. Jarvisalo, J, Olkinuora, M, Külunen, M, et al. Urinary and blood manganese in occupationally nonexposed populations and in manual metal arc welders of mild steel. Int Arch Occup Environ Health 1992; 63:495501.Google Scholar
27. Kondakis, XG, Makris, N, Leotsinides, M, et al. Possible health effects of high manganese concentration in drinking water. Arch Environ Health 1989; 44: 175178.Google Scholar
28. Goldsmith, JR, Herishanu, YO, Abarbanel, JM, Weinbaum, Z. Clustering of Parkinson’s disease points to environmental etiology. Arch Environ Health 1990; 45: 8894.CrossRefGoogle ScholarPubMed
29. EEC: Richtlinie des Rates vom 15.07.1980 über die Qualitat von Wasser für den menschlichen Gebrauch (80/778/EWG). Amtsblatt der Europäischen Gemeinschaften vom 30.08.1980 Nr.L229/11–29.Google Scholar