Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T00:01:18.291Z Has data issue: false hasContentIssue false

Invited Review: Clinical and Basic Neurophysiology of Generalised Epilepsies

Published online by Cambridge University Press:  02 December 2014

Warren T. Blume*
Affiliation:
London Health Sciences Centre - University Campus, Epilepsy Unit, University of Western Ontario, London, Ontario, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electroencephalography (EEG) clarifies several aspects of generalised epileptic seizures and epilepsies. For the clinician, it assists in the diagnosis of the epileptic condition and helps assign the disorder to an appropriate syndrome. This assignation and the quantity of epileptic discharges estimate severity and prognosis. When combined with relevant basic science investigations, EEG studies may disclose significant pathophysiological mechanisms. Therefore, this paper first describes EEG characteristics of the several disorders included under the broad category of “generalised”. The review then relates these phenomena to germane experimental data intending that this binocular survey will provide a more meaningful perspective of these disorders.

Résumé:

RÉSUMÉ:

L'électroencéphalographie éclaire plusieurs aspects des crises épileptiques généralisées et des épilepsies, guide le clinicien pour le diagnostic de la maladie épileptique et l'aide à assigner le désordre au syndrome approprié. Il est possible de déterminer la sévérité et le pronostic selon le syndrome et la quantité de décharges épileptiques. Quand cette information est associée aux investigations fondamentales pertinentes, les études ÉEG peuvent révéler des mécanismes physiopathologiques significatifs. Cet article décrit donc en premier lieu les caractéristiques ÉEG de plusieurs entités comprises sous la catégorie “généralisée”. Une relation est ensuite établie entre ces phénomènes et des données expérimentales pertinentes afin que cette double perspective puisse fournir une perspective plus juste de ces désordres.

Type
Review Article
Copyright
Copyright © Canadian Neurological Sciences Federation 2002

References

1. Fowler, FG, Fowler, HW. The Pocket Oxford Dictionary of CurrentEnglish, Fifth Ed. London: Oxford University Press, Ely House 1969.Google Scholar
2. Renier, WO. West syndrome. In: Meinardi, H. ed. Handbook ofClinical Neurology, Vol. 73 (29): The Epilepsies, Part II.The Netherlands: Elsevier Science B.V., 2000: 199210.Google Scholar
3. Hrachovy, RA, Frost, JD Jr, Kellaway, P. Sleep characteristics ininfantile spasms. Neurology 1981;31:688693.CrossRefGoogle ScholarPubMed
4. Hrachovy, RA, Frost, JD Jr. Intensive monitoring of infantilespasms. In: Schmidt, D, Orselli, PL. eds. Intractable Epilepsy. New York: Raven Press, 1986: 8797.Google Scholar
5. Hrachovy, RA, Frost, JD Jr, Kellaway, P. Hypsarrhythmia: variations on the theme. Epilepsia 1984; 25: 317325.CrossRefGoogle ScholarPubMed
6. Dalla Bernardina, B, Watanabe, K. Interictal EEG: variations andpitfalls. In: Dulac, O, Chugani, HT, Dalla Bernardina, B. eds. Infantile Spasms and West Syndrome. London: W.B. Saunders, 1994: 6381.Google Scholar
7. Jeavons, PM, Livet, MO. West syndrome: infantile spasms. In: Roger, J, Bureau, M, Dravet, C, et al. eds. Epileptic Syndromes in Infancy, Childhood and Adolescence, Second Ed. London: John Libbey, 1992: 5365.Google Scholar
8. Kellaway, P, Hrachovy, RA, Frost, JD Jr, Zion, T. Precisecharacterization and quantification of infantile spasms. Ann Neurol 1979; 6: 214218.CrossRefGoogle ScholarPubMed
9. Vigevano, F, Fusco, L, Cusmai, R, et al. The idiopathic form of Westsyndrome. Epilepsia 1993; 34: 743746.CrossRefGoogle Scholar
10. Egli, M, Mothersill, I, O’Kane, M, O’Kane, F. The axial spasm--thepredominant type of drop seizure in patients with secondary generalized epilepsy. Epilepsia 1985; 26: 401415.CrossRefGoogle ScholarPubMed
11. Watanabe, K, Iwase, K, Hara, H. The evolution of EEG features ininfantile spasms: a prospective study. Dev Med Child Neurol 1973;15:584596.CrossRefGoogle ScholarPubMed
12. Lombroso, CT. A prospective study of infantile spasms: clinical andtherapeutic correlations. Epilepsia 1983;24: 135158.CrossRefGoogle Scholar
13. Dulac, O, Plouin, P, Jambaque, I, Motte, J. Benign epileptic infantilespasms. Rev Electroencephalogr Neurophysiol Clin 1986;16:371382.CrossRefGoogle Scholar
14. Dulac, O, Dalla Bernardina, B. Cryptogenic/idiopathic Westsyndrome. In: Dulac, O, Chugani, HT, Dalla Bernardina, B. eds. Infantile Spasms and West Syndrome. London: W.B. Saunders, 1994: 232243.Google Scholar
15. Niedermeyer, E. Epilepsy seizure disorders. In: Niedermeyer, E, Lopes da Silva, F. eds. Electroencephalography. Basic Principles, Clinical Applications, and Related Fields, Fourth Ed. Baltimore, Maryland: Williams & Wilkins, 1999:476585.Google Scholar
16. Dulac, O, Plouin, P, Schlumberger, E. Infantile spasms. In: Wyllie, E. ed. The Treatment of Epilepsy. Principles and Practice, Second Ed. Baltimore: Williams & Wilkins, 1997:540572.Google Scholar
17. Baird, HW, Borofsky, LG. Infantile myoclonic seizures. J Pediatr 1957;50:332339.CrossRefGoogle ScholarPubMed
18. Ohtahara, S, Ohtsuka, Y, Yamatogi, Y, Oka, E, Inoue, H. Earlyinfantile epileptic encephalopathy with suppression-bursts. In: Roger, J, Bureau, M, Dravet, C, et al. eds. Epileptic Syndromes in Infancy, Childhood and Adolescence, Second Ed. London: JohnLibbey, 1992: 2534.Google Scholar
19. Aicardi, J. Epilepsy in Children. International Review of Child Neurology Series, Second Ed. New York: Raven Press 1986; 23.Google Scholar
20. Gastaut, H, Roger, J, Soulayrol, R, et al. Childhood epilepticencephalopathy with diffuse slow spike-waves (otherwise known as “petit mal variant”) or Lennox Syndrome. Epilepsia 1966; 7:139179.CrossRefGoogle ScholarPubMed
21. Blume, WT, Kaibara, M. Abnormal electroencephalogram:epileptiform potentials. In: Atlas of Pediatric Electroencephalogra-phy, Second Ed. Philadelphia: Lippincott-Raven, 1999: 156157.Google Scholar
22. Blume, WT, David, RB, Gomez, MR. Generalised sharp and slowwave complexes. Associated clinical features and long-termfollow-up. Brain 1973; 96: 289306.CrossRefGoogle Scholar
23. Markand, ON. Slow spike-wave activity in EEG and associatedclinical features: often called ’Lennox’ or ‘Lennox-Gastaut’ syndrome. Neurology 1977; 27: 746757.CrossRefGoogle ScholarPubMed
24. Chevrie, JJ, Aicardi, J. Childhood epileptic encephalopathy withslow spike-wave. A statistical study of 80 cases. Epilepsia 1972;13: 259271.CrossRefGoogle ScholarPubMed
25. Gastaut, H, Broughton, R. Epileptic Seizures. Clinical andElectrographic Features, Diagnosis and Treatment. Springfield, III.: Charles C. Thomas, 1972: 3747.Google Scholar
26. Tassinari, CA, Dalla Bernardina, B, Michelucci, R. Encephalopathywith electrical status epilepticus during slow sleep. In: Meinardi, H. ed. Handbook of Clinical Neurology, Vol. 73(29): The Epilepsies, Part II. Amsterdam: Elsevier Science B.V., 2000: 267280.Google Scholar
27. Weir, B. The morphology ofthe spike-wave complex. Electroencephalogr Clin Neurophysiol 1965;19:284290.CrossRefGoogle Scholar
28. Blume, WT, Kaibara, M. Abnormal electroencephalogram:epileptiform potentials. In: Atlas of Pediatric Electroencephalography, Second Ed.. Philadelphia: Lippincott Raven, 1999:154.Google Scholar
29. Lemieux, JF, Blume, WT. Topographical evolution of spike-wavecomplexes. Brain Res 1986;373:275287.CrossRefGoogle Scholar
30. Dalby, MA. Epilepsy and 3 per second spike and wave rhythms. Aclinical, electroencephalographic and prognostic analysis of 346 patients. Acta Neurol Scand Suppl 1969;45:1180.Google Scholar
31. Wolf, P, Gooses, R. Relation of photosensitivity to epilepticsyndromes. J Neurol Neurosurg Psychiatry 1986;49:13861391.CrossRefGoogle Scholar
32. Blume, WT, Kaibara, M. Abnormal electroencephalogram;epileptiform potentials. In: Atlas of Pediatric Electroencephalography, Second Ed.. Philadelphia: LippincottRaven, 1999: 155.Google Scholar
33. Miller, H, Blume, WT. Primary generalised seizure disorder:correlation of epileptiform discharges with seizure frequency. Epilepsia 1993;34(1):128132.CrossRefGoogle ScholarPubMed
34. Aicardi, J. Epilepsy in Children, Second Ed.. New York: Raven Press, 1994: 592.Google Scholar
35. Pampiglione, G, Harden, A. Neurophysiological identification of alate infantile form of “neuronal lipidosis”. J Neurol Neurosurg Psychiatry 1973;36:6874.CrossRefGoogle Scholar
36. Berkovic, SF, Andermann, F, Carpenter, S, Wolfe, LS. Progressivemyoclonus epilepsies: specific causes and diagnosis. N Engl J Med 1986;315:296305.CrossRefGoogle Scholar
37. Genton, P, Roger, J. The progressive myoclonus epilepsies. In: Wyllie, E. ed. The Treatment of Epilepsy: Principles and Practice. Philadelphia: Lea & Febiger, 1993:571583.Google Scholar
38. Blume, WT, Kaibara, M. Atlas of Pediatric Electroencephalography, Second Ed.. Philadelphia: Lippincott-Raven, 1999: 221224.Google Scholar
39. Blume, WT, Kaibara, M. Atlas of Pediatric Electroencephalography, Second Ed.. Philadelphia: Lippincott-Raven, 1999: 231233.Google Scholar
40. Blume, WT. Lennox-Gastaut syndrome and secondary bilateralsynchrony: a comparison. In: Wolf, P. ed. Epileptic Seizures and Syndromes. London: John Libbey, 1994: 285297.Google Scholar
41. Blume, WT, Pillay, N. Electrographic and clinical correlates ofsecondary bilateral synchrony. Epilepsia 1985; 26(6): 636641.CrossRefGoogle Scholar
42. Brenner, RP, Atkinson, R. Generalised paroxysmal fast activity: electroencephalographic and clinical features. Ann Neurol 1982;11:386390.CrossRefGoogle ScholarPubMed
43. Gastaut, H, Broughton, R. Epileptic Seizures. Clinical and Electrographic Features, Diagnosis and Treatment. Springfield,Ill: Charles C. Thomas, 1972: 5564.Google Scholar
44. Doose, H, Gerken, H, Volzke, E. On the genetics of EEG-anomaliesin childhood. I. Abnormal theta rhythms. Neuropadiatrie 1972; 3:386401.CrossRefGoogle Scholar
45. Tassinari, CA, Michelucci, R, Shigematsu, H, Seino, M. Atonic andfalling seizures. In: Engel, J Jr, Pedley, TA. eds. Epilepsy: A Comprehensive Textbook, Vol 1. Philadelphia, PA: LippincottRaven Publishers, 1997:605616.Google Scholar
46. Aicardi, J. Epilepsy and Other Seizure Disorders. In: Aicardi, J. ed. Diseases of the Nervous System in Childhood. London: MacKeith Press, 1998: 575637.Google ScholarPubMed
47. Browne, TR, Penry, JK, Porter, RJ, Dreifuss, FE. Responsiveness before, during and after spike-wave paroxysms. Neurology 1974;24:659665.CrossRefGoogle ScholarPubMed
48. Young, GB. The EEG in coma. J Clin Neurophysiol 2000;17:473485.CrossRefGoogle ScholarPubMed
49. Fagan, KJ, Lee, SI. Prolonged confusion following convulsions dueto generalised nonconvulsive status epilepticus. Neurology 1990;40:16891694.CrossRefGoogle Scholar
50. Blume, WT. Epilepsy with generalised tonic-clonic seizures onawakening and other idiopathic generalised epilepsies. In: Meinardi, H. ed. Handbook of Clinical Neurology, Vol. 73(29): The Epilepsies, Part II. Amsterdam: The Netherlands, 2000: 175182.Google Scholar
51. Gastaut, H, Broughton, R. Epileptic Seizures. Clinical andElectrographic Features, Diagnosis and Treatment. Springfield,Ill.: Charles C. Thomas, 1972: 2637.Google Scholar
52. Frantzen, E, Lennox-Buchthal, M, Nygaard, A. Longitudinal EEGand clinical study of children with febrile convulsions. Electroencephalogr Clin Neurophysiol 1968; 24: 197212.CrossRefGoogle Scholar
53. Kuturec, M, Emoto, SE, Sofijanov, N, et al. Febrile seizures: is theEEG a useful predictor of recurrences? Clin Pediatr Phila 1997;36:3136.CrossRefGoogle ScholarPubMed
54. Gastaut, H, Poirier, F, Payan, H, et al. H.H.E. syndrome:hemiconvulsions, hemiplegia, epilepsy. Epilepsia 1960;1:418447.CrossRefGoogle ScholarPubMed
55. Sofijanov, N, Emoto, S, Kuturec, M, et al. Febrile seizures: clinicalcharacteristics and initial EEG. Epilepsia 1992; 33:5257.CrossRefGoogle Scholar
56. Aicardi, J. Epilepsy in Children, Second Ed.. New York: Raven Press, 1994:2125.Google Scholar
57. Jeavons, PM, Bower, BD. Infantile spasms. In: Vinken, PJ, Bruyn, GW. eds. Handbook of Clinical Neurology, Vol. 15: The Epilepsies. New York: American Elsevier, 1974: 219234.Google Scholar
58. Aicardi, J. Clinical and EEG symptomatology of the ’genuine’Lennox-Gastaut syndrome and its differentiation from other forms of epilepsy of early childhood. In: Degen, R. ed. The Benign Localised and Generalised Epilepsies of Early Childhood, Vol. 6. Amsterdam: Elsevier, 1992:179186.Google Scholar
59. Lombroso, CT. Early myoclonic encephalopathy, early infantileepileptic encephalopathy, and benign and severe infantile myoclonic epilepsies: a critical review and personalcontributions. J Clin Neurophysiol 1990;7:380408.CrossRefGoogle Scholar
60. Genton, P, Guerrini, R, Dravet, C. The Lennox-Gastaut syndrome. In: Meinardi, H. ed. Handbook of Clinical Neurology, Vol. 73(29): The Epilepsies, Part II. Amsterdam: Elsevier, 2000:211222.Google Scholar
61. Dravet, C, Bureau, M, Guerrini, R, et al. eds. Epileptic Syndromes inInfancy, Childhood and Adolescence. London: John Libbey, 1992: 7588.Google Scholar
62. Tassinari, CA, Bureau, M, Dravet, C, Roger, J, Daniele-Natale, O. Electrical status epilepticus during sleep in children (ESES). In: Sterman, MB, Shouse, MN, Passouant, P. eds. Sleep and Epilepsy. London: Academic Press, 1982: 465479.Google Scholar
63. Janz, D, Inoue, Y, Seino, M. Myoclonic Seizures. In: Engel, J Jr, Pedley, TA. eds. Epilepsy: A Comprehensive Textbook, Vol 1. Philadelphia, PA: Lippincott-Raven Publishers, 1997:591603.Google Scholar
64. Blume, WT. Hemispheric epilepsy. Brain 1998;121:19371949.CrossRefGoogle ScholarPubMed
65. Blume, WT, Kaibara, M. Atlas of Pediatric Electroencephalography. Second Ed. Philadelphia: Lippincott-Raven 1999;154155.Google Scholar
66. Blume, WT, Kaibara, M. Atlas of Adult Electroencephalography. New York: Raven Press 1995;320325.Google Scholar
67. Blume, WT, Kaibara, M. Atlas of Adult Electroencephalography. New York: Raven Press 1995; 328332.Google Scholar
68. Mundy-Castle, AC. The clinical significance of photic stimulation. Electroenceph Clin Neurophysiol 1953;5:187202.CrossRefGoogle ScholarPubMed
69. Eeg-Olofsson, O, Petersen, I, Sellden, U. The development of theelectroencephalogram in normal children from the age of 1 through 15 years. Paroxysmal activity. Neuropadiatrie 1971; 2:375404.CrossRefGoogle ScholarPubMed
70. Wolf, P. Epilepsy with grand mal on awakening. In: Roger, J, Bureau, M, Dravet, C, et al. eds. Epileptic Syndromes in Infancy, Childhood and Adolescence. London: John Libbey & Company Ltd., 1992: 329341.Google Scholar
71. Blume, WT, Kaibara, M. Atlas of Pediatric Electroencephalography. Second Ed. Philadelphia: Lippincott-Raven 1999;368369.Google Scholar
72. Jasper, H, Kershman, J. Electroencephalographic classification ofthe epilepsies. Arch Neurol Psychiatry 1941;45:903943.CrossRefGoogle Scholar
73. Aicardi, J, Chevrie, JJ. Myoclonic epilepsies of childhood. Neuropadiatrie 1971;3:177190.CrossRefGoogle ScholarPubMed
74. Gibbs, FA, Lennox, WG, Gibbs, EL. The electroencephalogram indiagnosis and localization of epileptic seizures. Arch NeurolPsychiatry 1936;36:12251235.CrossRefGoogle Scholar
75. Bancaud, J, Talairach, J, Bonis, A, et al. La Stereo-Electroencepha-lographie dans l’Epilepsie. Paris: Masson 1965.Google Scholar
76. Goldring, S. The role of prefrontal cortex in grand mal convulsion. Arch Neurol 1972;26:109119.CrossRefGoogle ScholarPubMed
77. Gloor, P, Kalabay, O, Giard, N. The electroencephalogram in diffuseencephalopathies: electroencephalographic correlates of grey and white matter lesions. Brain 1968;91:779802.CrossRefGoogle Scholar
78. Prince, DA, Farrell, D. “Centrencephalic” spike-wave dischargesfollowing parenteral penicillin injection in the cat. Neurology 1969;19:309310.Google Scholar
79. Fisher, RS, Prince, DA. Spike-wave rhythms in cat cortex inducedby parenteral penicillin. I. Electroencephalographic features. Electroencephalogr Clin Neurophysiol 1977;42:608624.CrossRefGoogle Scholar
80. Gloor, P, Avoli, M, Kostopoulos, G. Thalamocortical relationships ingeneralised epilepsy with bilaterally synchronous spike-and-wave discharge. In: Avoli, M, Gloor, P, Kostopoulos, G, et al. eds. Generalised Epilepsy: Neurobiological Approaches. Massachusetts: Birkhauser Boston, Inc., 1990:190212.CrossRefGoogle Scholar
81. Avoli, M, Gloor, P. The effects of transient functional depression ofthe thalamus on spindles and on bilateral synchronous epileptic discharges of feline generalised penicillin epilepsy. Epilepsia 1981;22:443452.CrossRefGoogle Scholar
82. Lothman, EW. The neurobiology of epileptiform discharges. Am JEEG Technol 1993;33:93112.Google Scholar
83. Blumenfeld, H, McCormick, DA. Corticothalamic inputs control thepattern of activity generated in thalamocortical networks. J Neurosci 2000;20:51535162.CrossRefGoogle Scholar
84. Fisher, RS, Prince, DA. Spike-wave rhythms in cat cortex inducedby parenteral penicillin. II. Cellular features. ElectroencephalogrClin Neurophysiol 1977;42:625639.CrossRefGoogle Scholar
85. Kostopoulos, G, Avoli, M, Pellegrini, A, Gloor, P. Laminar analysis ofspindles and of spikes of the spike and wave discharge of feline generalised penicillin epilepsy. Electroencephalogr Clin Neurophysiol 1982;53:113.CrossRefGoogle ScholarPubMed
86. Kostopoulos, G, Gloor, P, Pellegrini, A, Gotman, J. A study of thetransition from spindles to spike and wave discharge in feline generalised penicillin epilepsy: microphysiological features. ExpNeurol 1981;73:5577.Google Scholar
87. Elger, CE, Speckmann, E-J. Vertical inhibition in motor corticalepileptic foci and its consequences for descending neuronal activity to the spinal cord. In: Speckmann, E-J, Elger, CE. eds. Epilepsy and Motor System. Baltimore, MD: Urban & Schwarzenberg, 1983:152160.Google Scholar
88. Avoli, M, Gloor, P. Interaction of cortex and thalamus in spike andwave discharges of feline generalised penicillin epilepsy. ExpNeurol 1982;76:196217.Google Scholar
89. Pumain, R, Louvel, J, Gastard, M, Kurcewicz, I, Vergnes, M. Responses to N-methyl-D-aspartate are enhanced in rats with petit mal-like seizures. J Neural Transm Suppl 1992;35:97108.Google ScholarPubMed
90. Avanzini, G, de Curtis, M, Pape, HC, Spreafico, R. Intrinsicproperties of reticular thalamic neurons relevant to genetically determined spike-wave generation. Adv Neurol 1999;79:297309.Google ScholarPubMed
91. Brodal, A. Neurological Anatomy in Relation to Clinical Medicine, Third Ed. New York: Oxford University Press, 1981: 99.Google Scholar
92. Dempsey, EW, Morison, RS. Production of rhythmically recurrentcortical potentials after localised thalamic stimulation. Am J Physiol 1942;135:293300.CrossRefGoogle Scholar
93. Brazier, MAB. The Electrical Activity of the Nervous System, Third Ed. London: Pitman Medical Publishing Co. Ltd., 1968:260.Google Scholar
94. Gloor, P, Quesney, LF, Zumstein, H. Pathophysiology of generalisedpenicillin epilepsy in the cat: the role of cortical and subcortical structures. II. Topical application of penicillin to the cerebral cortex and to subcortical structures. Electroencephalogr ClinNeurophysiol 1977;43:7994.CrossRefGoogle Scholar
95. Gloor, P. Generalised epilepsy with spike-and-wave discharge: areinterpretation of its electrographic and clinical manifestations. The 1977 William G. Lennox Lecture, American EpilepsySociety. Epilepsia 1979;20:571588.CrossRefGoogle Scholar
96. Huguenard, JR, McCormick, DA, Coulter, D. Thalamocorticalinteractions. In: Gutnick, MJ, Mody, I. eds. The Cortical Neuron. New York: Oxford University Press, 1995:156173.CrossRefGoogle Scholar
97. Sherman, SM. Tonic and burst firing: dual modes of thalamocorticalrelay. Trends Neurosci 2001;24:122126.CrossRefGoogle Scholar
98. Avanzini, G, de Curtis, M, Franceschetti, S, Sancini, G, Spreafico, R. Cortical versus thalamic mechanisms underlying spike and wavedischarges in GAERS. Epilepsy Res 1996;26:3744.CrossRefGoogle ScholarPubMed
99. Coulter, DA, Huguenard, JR, Prince, DA. Characterization ofethosuximide reduction of low-threshold calcium current inthalamic neurons. Ann Neurol 1989;25:582593.CrossRefGoogle ScholarPubMed
100. Kelly, KM, Gross, RA, Macdonald, RL. Valproic acid selectivelyreduces the low-threshold (T) calcium current in rat nodoseneurons. Neurosci Lett 1990;116:233238.CrossRefGoogle Scholar
101. Kim, U, Sanchez-Vives, MV, McCormick, DA. Functional dynamicsof GABAergic inhibition in the thalamus. Science 1997;278:130134.CrossRefGoogle Scholar
102. Snead, OC III, Depaulis, A, Vergnes, M, Marescaux, C. Advances inexperimental animal models. In: Delgado-Escueta, AV, Wilson, WA, Olsen, RW, et al. eds. Jasper’s Mechanisms of the Epilepsies, Third Ed. Philadelphia: Williams and Wilkins, 1999:253278.Google Scholar
103. Avoli, M, Rogawski, MA, Avanzini, G. Generalised epilepticdisorders: an update. Epilepsia 2001;42:445457.CrossRefGoogle Scholar
104. Catsman-Berrevoets, CE, Kuypers, HGJM. Cells of origin ofcortical projections to dorsal column nuclei, spinal cord and bulbar medial reticular formation in the rhesus monkey. Neurosci Lett 1976;3:245252.CrossRefGoogle Scholar
105. Keizer, K, Kuypers, HGJM. Distribution of corticospinal neuronswith collaterals to lower brain stem reticular formation in cat. Exp Brain Res 1984;54:107120.CrossRefGoogle Scholar
106. Kuypers, HGJM. Anatomy of the descending pathways. In: Brookhart, JM, Mountcastle, VB, Brooks, VB, et al. eds. Handbook of Physiology. Section 1: The Nervous System. Vol. 2. Bethesda, Maryland: American Physiological Society, 1981:597666.Google Scholar
107. Newman, DB, Hilleary, SK, Ginsberg, CY. Nuclear terminations ofcorticoreticular fiber systems in rats. Brain Behav Evol 1989;34:223264.CrossRefGoogle ScholarPubMed
108. Brooks, VB. The Neural Basis of Motor Control. New York: Oxford University Press, 1986;84110.Google Scholar
109. Saper, CB. Brain stem modulation of sensation, movement, andconsciousness. In: Kandel, ER, Schwartz, JH, Jessell, TM. eds. Principles of Neural Sciences, Fourth Ed.. New York: McGraw-Hill, 2000:896.Google Scholar
110. Rhines, R, Magoun, HW. Brain stem facilitation of cortical motorresponse. J Neurophysiol 1946; 9: 219229.CrossRefGoogle Scholar
111. Velasco, F, Velasco, M. Mesencephalic structures and tonic-clonicgeneralised seizures. In: Avoli, M, Gloor, P, Kostopoulos, G, et al. eds. Generalized Epilepsy. Boston: Birkhauser Boston, Inc., 1990:368384.CrossRefGoogle Scholar
112. Velasco, F, Velasco, M, Romo, R. Pyramidal tract and brain stemreticular multiple unit activities during pentylenetetrazol seizures in acute encephale isole cats. In: Canger, R, Angeleri, F, Penry, JK. eds. Advances in Epileptology: XIth Epilepsy International Symposium. New York: Raven Press, 1980:149151.Google Scholar
113. Browning, R, Nelson, D. Variation in threshold and pattern ofelectroshock-induced seizures in rats depending on site ofstimulation. Life Sci 1985;37:22052211.CrossRefGoogle Scholar
114. Marcus, EM, Watson, CW, Simon, SA. An experimental model ofsome varieties of petit mal epilepsy. Electrical-behavioral correlations of acute bilateral epileptogenic foci in cerebralcortex. Epilepsia 1968;9:233248.CrossRefGoogle Scholar
115. Avoli, M, Gloor, P, Kostopoulos, G. Focal and generalisedepileptiform activity in the cortex: in search of differences in synaptic mechanisms, ionic movements, and long-lasting changes in neuronal excitability. In: Avoli, M, Gloor, P, Kostopoulos, G, et al. eds. Generalized Epilepsy Neurobiological Approaches. Massachusetts: Birkhauser Boston, Inc., 1990: 213231.CrossRefGoogle Scholar
116. Lux, HD, Heinemann, U, Dietzel, I. Ionic changes and alterations inthe size of the extracellular space during epileptic activity. Adv Neurol 1986;44:619639.Google Scholar
117. Commission on Classification and Terminology of theInternational League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989;30(4):389399.CrossRefGoogle Scholar
118. Aicardi, J. Epilepsy in Children. International Review of ChildNeurology Series, Second Ed. New York: Raven Press, 1994;130164.Google Scholar
119. Howell, DA. Unusual centrencephalic seizure patterns. Brain 1955;78:199208.CrossRefGoogle ScholarPubMed
120. Gastaut, H, Roger, J, Faidherbe, J, Ouahchi, S. Non-jacksonianhemiconvulsive seizures. One-sidedgeneralised epilepsy. Epilepsia 1962; 2: 5668.CrossRefGoogle Scholar
121. Lombroso, CT. Consistent EEG focalities detected in subjects withprimary generalised epilepsies monitored for two decades. Epilepsia 1997;38:797812.CrossRefGoogle Scholar
122. Penfield, W, Jasper, HH. Highest level seizures. Res Publ Assoc Res Nerv Ment Dis 1946;26:252271.Google Scholar
123. Tukel, K, Jasper, H. The electroencephalogram in parasagittallesions. Electroencephalogr Clin Neurophysiol 1952;4:481494.CrossRefGoogle Scholar
124. Bickford, RG, Klass, DW. Sensory precipitation and reflexmechanisms. In: Jasper, HH, Ward, AA Jr. Pope, A. eds. Basic Mechanisms of the Epilepsies. Boston: Little, Brown and Company, 1969:543564.Google Scholar
125. Bancaud, J, Talairach, J, Morel, P, et al. “Generalised” epilepticseizures elicited by electrical stimulation of the frontal lobe in man. Electroencephalogr Clin Neurophysiol 1974;37:275282.CrossRefGoogle Scholar