Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T02:07:28.604Z Has data issue: false hasContentIssue false

Intermediate Filaments in the Human Pituitary Gland: An Immunohistochemical Study

Published online by Cambridge University Press:  18 September 2015

W.C. Halliday*
Affiliation:
Departments of Pathology, University of Manitoba
S.L. Asa
Affiliation:
St. Michael's Hospital, Toronto
K. Kovacs
Affiliation:
St. Michael's Hospital, Toronto
B.W. Scheithauer
Affiliation:
Mayo Clinic, Rochester
*
Department of Pathology (Neuropathology), Health Sciences Centre, MS-435-T, 820 Sherbrook Street, Winnipeg, Manitoba, Canada R3A 1R9
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Normal pituitaries, pituitaries showing CHC and selected adenomas were assessed for their possible content of intermediate filaments (IF), using immunohistochemical techniques. Normal pituitaries were stained for each of the five known IF (Cytokeratins (CK), glial fibrillary acidic protein (GFAP), desmin, vimentin, and neurofilaments (NF)). Desmin could not be demonstrated, and NF staining was limited to processes in the posterior gland. In serial sections, CK was demonstrated in some corticotrophs, somatotrophs, and lactotrophs. Vimentin was limited to processes in the posterior gland. Folliculo-stellate cells (FSC), demonstrated by staining for SlOO protein, exhibited a small subpopulation staining for CK, and another subpopulation staining for GFAP. GFAP was also demonstrated in glial processes in the posterior gland. Cells showing Crooke's hyaline change stained intensely for CK. Null cell adenomas did not stain for CK. Corticotroph adenomas, somatotroph adenomas, with or without fibrous bodies, and lactotroph adenomas contain CK-immunoreactive cells. We conclude that CK is the major IF present in the anterior pituitary gland, within some normal corticotrophs, somatotrophs and lactotrophs, and also in adenomas derived from these cells.

Résumé:

RÉSUMÉ:

Des hypophyses normales, des hypophyses présentent des changements hyalins de Crooke (CHC) et des adénomes ont été évaluées quant à leur contenu en filaments intermédiaires (FI) au moyen de techniques immunohistochimiques. Les hypophyses normales ont été colorées pour chacun des cinq FI connus (cytokératines (CK), protéine gliale fibrillaire acide (GFAP), desmine, vimentine, et neurofilaments (NF)). La desmine n'a pu être mise en évidence et la coloration pour les NF était limitée aux terminaisons dans l'hypophyse postérieure. Dans des coupes sériées, les CK étaient présentes dans des cellules corticotrophes, somatotrophes et lactotrophes. La vimentine était limitée aux terminaisons dans l'hypophyse postérieure. Les cellules étoilées folliculaires (FSC) mises en évidence par la coloration pour la protéine S100, présentaient une petite sous-population qui prenait le colorant pour la GFAP. La GFAP a également été mise en évidence dans le prolongements gliaux dans l'hypophyse postérieure. Les cellules manifestant le CHC prenaient intensément la coloration pour les CK. Les adénomes à cellules nulles ne montraient pas de CK. Les adénomes corticotrophes, les adénomes somatotrophes, avec ou sans corps fibreux, et les adenomes lactotrophes contiennent des cellules CK-positives. Nous concluons que les CK sont le FI majeur présent dans l'hypophyse antérieure, dans des cellules corticotrophes, somatotrophes et lactotrophes normales et également dans des adénomes dérivés de ces cellules.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1990

References

REFERENCES

1. Steinert, PM, Steven, AC, Roop, DR. The molecular biology of intermediate filaments. Cell 1985; 42: 411419.CrossRefGoogle ScholarPubMed
2. Osborn, M. Intermediate filaments as histologic markers: an overview. J Invest Dermatol 1983; 81 (Suppl 1): 104s–109s.CrossRefGoogle ScholarPubMed
3. Osborn, M, Weber, K. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest 1983; 48: 372394.Google ScholarPubMed
4. Kovacs, K, Horvath, E, Use, G. Type I microfilaments in adenohypophyseal cells of the human pituitary. Microscopical Society of Canada 1975; 11: 2829.Google Scholar
5. Kovacs, K, Horvath, E. Stratmann, I.E., et al. Cytoplasmic microfilaments in the anterior lobe of the human pituitary gland. Acta Anat 1974; 87: 414426.CrossRefGoogle ScholarPubMed
6. Kovacs, K, Horvath, E. Morphology of adenohypophyseal cells and pituitary adenomas. In: Imura, H, ed. The Pituitary Gland. Raven Press 1985.Google Scholar
7. Asa, SL, Kovacs, K. Histological classification of pituitary disease. Clin Endocrinol Metab 1983; 12 (3): 567596.CrossRefGoogle ScholarPubMed
8. Asa, SL, Horvath, E, Kovacks, , et al. Cytology of the normal pituitary and pituitary tumors, chapter II. In: Odell, WD, Nelson, D, eds. Pituitary Tumors Futura Publishers, Ltd. 1984.Google Scholar
9. Halmi, NS, McCormick, WF, Decker, DA. The natural history of hyalinization of ACTH-MSH cells in man. Arch Pathol 1971; 91: 318326.Google ScholarPubMed
10. Schochet, SS, McCormick, WF, Halmi, NS. Acidophil adenomas with intracytoplasmic Filamentous aggregates. Arch Pathol 1972; 94: 1622.Google ScholarPubMed
11. DeCicco, FA, Dekker, A, Yunis, EJ. Fine structure of Crooke’s hyaline change in the human pituitary gland. Arch Pathol 1972; 94: 6570.Google ScholarPubMed
12. Kovacs, K, Horvath, E. Amphophil adenoma of the human pituitary gland with masses of cytoplasmic microfilaments. Endo-krinologie 1974; 63 (3): 402408.Google ScholarPubMed
13. Robert, F, Pelletier, G, Hardy, J. Pituitary adenomas in Cushing’s disease. Arch Pathol Lab Med 1978; 102: 448455.Google ScholarPubMed
14. Felix, IA, Horvath, E, Kovacs, K. Massive Crooke’s hyalinization in corticotroph cell adenomas of the human pituitary. Acta Neurochir 1981; 58: 235243.CrossRefGoogle ScholarPubMed
15. Horvath, E. Kovacs, K. Tumors of the pituitary gland. Atlas of Tumor Pathology, Fascicle 21, Second Series. Washington: Armed Forces Institute of Pathology, 1986.Google Scholar
16. Horvath, E, Kovacs, K. Morphogenesis and significance of fibrous bodies in human pituitary adenomas. Virchows Arch B Cell Path 1978; 27: 6978.CrossRefGoogle ScholarPubMed
17. Horvath, E, Kovacs, K, Singer, W, et al. Acidophil stem cell adenoma of the human pituitary. Cancer 1981; 47 (4): 761771.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
18. Neumann, PE, Horoupian, DS, Goldman, JE, et al. Cytoplasmic filaments of Crooke’s hyaline change belong to the cytokeratin class. Am J Physiol 1984; 116 (2): 214222.Google Scholar
19. Neumann, PE, Goldman, JE, Horoupian, DS, et al. Fibrous bodies in growth hormone-secreting adenomas contain cytokeratin filaments. Arch Pathol Lab Med 1985; 109: 505508.Google ScholarPubMed
20. Stemberger, LA. Immunocytochemistry. 2nd ed. New York: Wiley 1979.Google Scholar
21. Höfler, H, Denk, H, Walter, GF. Immunohistochemical demonstration of cytokeratins in endocrine cells of the pituitary gland and in pituitary adenomas. Virchows Arch [Pathol Anat] 1984; 404: 359368.CrossRefGoogle ScholarPubMed
22. Altmannsberger, M, Osborn, M, Schauer, A, et al. Antibodies to different intermediate filament proteins. Cell type-specific markers in paraffin-embedded human tissues. Lab Invest 1981; 45: 427434.Google ScholarPubMed
23. Halliday, WC, Yeger, H, Duwe, GF, et al. Intermediate filaments in meningiomas. J Neuropathol Exp Neurol 1985; 44 (6): 617623.CrossRefGoogle ScholarPubMed
24. Höfler, H. Walter, GF, Denk, H. Immunohistochemistry of folliculostellate cells in normal human adenohypophyses and in pituitary adenomas. Acta Neuropathol (Bed) 1984; 65: 3540.CrossRefGoogle Scholar
25. Höfler, H. Denk, H, Lackinger, E, et al. Immunocytochemical demonstration of intermediate filament cytoskeleton proteins in human endocrine tissues and (neuro-) endocrine tumours. Virchows Arch [Pathol Anat] 1986; 409: 609626.CrossRefGoogle Scholar
26. Schnitzer, J, Franke, WW, Schachner, M. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 1981; 90: 435447.CrossRefGoogle ScholarPubMed
27. Gard, DL, Lazarides, E. The synthesis and distribution of desmin and vimentin during myogenesis in vitro. Cell 1980; 19: 263275.CrossRefGoogle ScholarPubMed
28. Velasco, ME, Roessmann, U, Gambetti, P. The presence of glial fibrillary acidic protein in the human pituitary gland. J Neuropathol Exp Neurol 1982; 41 (2): 150163.CrossRefGoogle ScholarPubMed
29. Morris, CS, Hitchcock, E. Immunocytochemistry of folliculostellate cells of normal and neoplastic human pituitary gland. J Clin Pathol 1985; 83: 481488.CrossRefGoogle Scholar
30. Kovacs, K, Horvath, E, Ryan, N. Immunocytology of the human pituitary. In: DeLellis, RA, ed. Diagnostic immunohistochemistry. Monographs in Diagnostic Pathology. New York:.Masson 1981; 1735.Google Scholar
31. Kinoff, RJ, Huang, S-N. Immunocytochemical and immunoelectron microscopic studies on Mallary bodies. Lab Invest 1981; 45: 491503.Google Scholar