Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T01:48:57.845Z Has data issue: false hasContentIssue false

The Influence of Fish Oil on Neurological Development and Function

Published online by Cambridge University Press:  23 September 2014

Noran M. Abu-Ouf
Affiliation:
Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
Mohammed M. Jan
Affiliation:
Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fish oil originates from fish tissue rich in omega-3 fatty acids. These include eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Healthy individuals are advised to consume foods rich in fish oil at least twice a week. However, such intake varies depending on cultural or personal preference, and socio-economic status. Many families and patients with chronic neurological conditions consume supplements containing omega-3 fatty acids. We are frequently requested to give advice and recommendations on using such agents to help improve neurological developmental and cognitive functions. The objective of this review is to discuss the available literature supporting the role of fish oils on brain development and function. There is a growing body of literature suggesting a potential benefit of long chain polyunsaturated fatty acids; however it is still unclear if there are response variations according to the developmental stage, age, and dose.

Résumé

RÉSUMÉ

L’influence de l’huile de poisson sur le développement et la fonction neurologique. L’huile de poisson provient de tissus de poisson riches en acides gras oméga-3, l’acide eicosapentaénoÏque (ePA) et l’acide docosahexaénoïque (DhA). On conseille aux individus en bonne santé de consommer des aliments riches en huiles de poisson au moins deux fois par semaine. Cependant, leur consommation varie selon les préférences culturelles ou personnelles ainsi que selon le statut socio-économique. Plusieurs familles et plusieurs patients atteints de maladies neurologiques chroniques consomment des suppléments contenant des acides gras oméga-3. On nous demande souvent des conseils et des recommandations sur l’utilisation de ces agents pour aider à améliorer le développement neurologique et les fonctions cognitives. L’objectif de cette revue est de discuter de la littérature disponible en faveur du rôle des huiles de poisson dans le développement et le fonctionnement du cerveau. Il existe une documentation de plus en plus importante qui suggère que les acides gras polyinsaturés à longue chaîne pourraient être bénéfiques. Cependant, on ne sait pas si la réponse peut varier selon le stade du développement, l’âge et la dose.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2014

References

1. Moghadasian, MH. Advances in dietary enrichment with n-3 fatty acids. Crit Rev Food Sci Nutr. 2008;48(5):40210.Google Scholar
2. Mahaffey, KR. Fish and shellfish as dietary sources of methylmercury and the α-3 fatty acids, eicosahexaenoic acid and docosahexaenoic acid:risks and benefits. Environ Res. 2004;95: 41428.CrossRefGoogle Scholar
3. Chan, EJ, Cho, L. What can we expect from omega-3 fatty acids? Cleve Clin J Med. 2009;76(4):24551.Google Scholar
4. Isaacs, EB, Fischl, BR, Quinn, BT, Wui, CK, Gadian, DG, Lucas, A. Impact of breast milk on intelligence quotient, brain size, and white matter development. Ped Res. 2010;67(4):35762.Google Scholar
5. Johnson, MH, Grossmann, T, Kadosh, KC. Mapping functional brain development: building a social brain through interactive specialization. Dev Psychol. 2009:45(1):1519.CrossRefGoogle ScholarPubMed
6. Taha, AY, Trepanier, MO, Ciobanu, FA. A minimum of 3 months of dietary fish oil supplementation is required to raise amygdaloid after discharge seizure thresholds in rats–implications for treating complex partial seizures. Epilepsy Behav. 2013;27(1): 4958.Google Scholar
7. Natalie, Sinn, Milte, C, Howe, PR. Oiling the brain: a review of randomized controlled trials of omega-3 fatty acids in psychopathology across the lifespan. Nutr. 2010;2:12870.Google Scholar
8. Terracina, L, Brunetti, M, Avellini, L, de Medio, GE, Trovarelli, G, Gaiti, A. Linoleic acid metabolism in brain cortex of aged rats. Ital J Biochem. 1992;41:22535.Google Scholar
9. Rapoport, SI. In vivo fatty acid incorporation into brain phospholipids in relation to plasma availability, signal transduction and membrane remodeling. J Mol Neurosci. 2001; 16:24361.Google Scholar
10. Su, HM, Huang, MC, Saad, NM, Nathanielsz, PW, Brenna, JT. Fetal baboons convert 18:3 n-3 to 22:6n-3 in vivo: a stable isotope tracer study. J Lipid Res. 2001;42:5816.Google Scholar
11. McCann, JC, Ames, BN. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr. 2005; 82:28195.CrossRefGoogle ScholarPubMed
12. Richardson, UI, Wurtman, RJ. Polyunsaturated fatty acids stimulate phosphatidylcholine synthesis in PC12 cells. Biochem Biophys Acta. 2007;1771:55863.Google ScholarPubMed
13. Yu, T, Lieberman, AP. Npc1 acting in neurons and glia is essential for the formation and maintenance of CNS myelin. PLoS Genet. 2013;9(4):e1003462.Google Scholar
14. Yehuda, S, Rabinovitz, S, Carasso, RL, Mostofsky, DT. The role of PUFA in restoring the aging neuronal membrane. Neurobiol Aging. 2002;23:84353.Google Scholar
15. Kothapalli, KS, Anthony, JC, Pan, BS. Differential cerebral cortex transcriptomes of baboon neonates consuming moderate and high docosahexaenoic acid formulas. PLoS One. 2007;2:e370.CrossRefGoogle ScholarPubMed
16. Calviello, G, Su, HM, Weylandt, KH, Fasano, E, Serini, S, Cittadini, A. Experimental evidence of −3 polyunsaturated fatty acid modulation of inflammatory cytokines and bioactive lipid mediators: their potential role in inflammatory, neurodegenerative, and neoplastic diseases. Biomed Res Int. 2013;7: 4317.Google Scholar
17. Hussar, CR, Pasternak, T. Flexibility of sensory representations in prefrontal cortex depends on cell type. Neuron. 2009;64:73043.Google Scholar
18. Salvati, S, Attorri, L, Avellino, C, Di Biase, A, Sanchez, M. Diet, lipids and brain development. Dev Neurosci. 2000;22:4817.CrossRefGoogle ScholarPubMed
19. Auestad, N. Infant nutrition – brain development – disease in later life. Dev Neurosci. 2000;22:4723.CrossRefGoogle ScholarPubMed
20. Agostoni, C, Galli, C, Riva, F, Colombo, C, Giovannini, M, Marangoni, F. Reduced docosahexaenoic acid synthesis may contribute to growth restriction in infants born to mothers who smoke. J Pediatr. 2005;147:8546.Google Scholar
21. Yui, K, Koshiba, M, Nakamura, S, Kobayashi, Y. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial. J Clin Psychopharmacol. 2012;32(2):2006.Google Scholar
22. Parletta, N, Cooper, P, Gent, DN, Petkov, J, O’Dea, K. Effects of fish oil supplementation on learning and behaviour of children from Australian Indigenous remote community schools: a randomised controlled trial. Prostaglandins Leukot Essent Fatty Acids. 2013; 89(2–3):719.CrossRefGoogle Scholar
23. Bakker, EC, Ghys, AJA, Kester, ADM, et al. Long-chain polyunsaturated fatty acids at birth and cognitive function at 7 y of age. Eur J Clin Nutr. 2003;57:8995.Google Scholar
24. Zhang, J, Hebert, JR, Muldoon, MF. Dietary fat intake is associated with psychosocial and cognitive functioning of school-aged children in the united states. J Nutr. 2005;135:196773.Google Scholar
25. San Giovanni, JP, Berkey, CS, Dwyer, JT, Colditz, GA. Dietary essential fatty acids, long-chain polyunsaturated fatty acids, and visual resolution acuity in healthy full term infants: a systematic review. Early Hum Dev. 2000:57:16588.CrossRefGoogle Scholar
26. Uauy, R, Hoffman, DR, Mena, P, Llanos, A, Birch, EE. Term infant studies of DHA and ARA supplementation on neurodevelopment: results of randomized controlled trials. J Pediatr. 2003;143(4):1725.Google Scholar
27. Innis, SM. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr. 2011;7(2): 11223.Google Scholar
28. Hammond, BR, Wooten, BR. Comments on the use of raman spectroscopy for the in vivo measurement of human macular pigment. Appl Spectrosc. 2006;60(11):e13489.Google Scholar
29. Bernstein, PS, Delori, FC, Richer, S, van Kuijk, FJ, Wenzel, AJ. The value of measurement of macular carotenoid pigment optical densities and distributions in age-related macular degeneration and other retinal disorders. Vision Res. 2010;50(7):71628.Google Scholar
30. Yuhas, R, Pramuk, K, Lien, EL. Human milk fatty acid composition from nine countries varies most in DHA. Lipids. 2006;41:8518.Google Scholar
31. Brenna, JT, Varamini, BA, Boetacher, JA, Arterburn, LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2009:85:145764.Google Scholar
32. Weiler, H, Fitzpatrick-Wong, S, Schellenberg, J, McCloy, U, Veitch, R, Kovacs, H. Maternal and cord blood long chain polyunsaturated fatty acids are predictive of bone mass at birth in healthy term-born infants. Ped Res. 2005;58:12548.Google Scholar
33. Gibson, RA, Neumann, MA, Makrides, M. Effect of increasing breast milk docosahexaenoic acid on plasma and erythrocyte phospholipid fatty acids and neural indices of exclusively breast fed infants. Eur J Clin Nutr. 1997;54:57884.CrossRefGoogle Scholar
34. Lauritzen, L, Jorgensen, MH, Mikkelsen, TB, et al. Maternal fish oil supplementation in lactation: effect on visual acuity and n-3 fatty acid content of infant erythrocytes. Lipids. 2004;39(3):195206.Google Scholar
35. Schlotz, W, Phillips, DI. Fetal origins of mental health: evidence and mechanisms. Brain Behav Immun. 2009;23:90516.Google Scholar
36. Kaur, N, Chugh, V, Gupta, AK. Essential fatty acids as functional components of foods - a review. J Food Sci Tech. 2012;10(1): 6779.Google Scholar
37. Yehuda, S, Carasso, RL, Mostofsky, DI. Essential fatty acid preparation (1:4 ratio) rehabilitates learning deficits induced by AF64A and 5,7-DHT. Neuro Report. 1995;6:51115.Google Scholar
38. Auestad, N, Scot, DT, Janowsky, JS, Jacobsen, C, Carroll, RE, Montalto, MB. Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatr. 2003;112:e17783.CrossRefGoogle ScholarPubMed
39. Wan, JM Huang, L, Rong, R, Tan, R, Wang, J, Kang, JX. Endrogenously decreasing tissue n-6/n-3 fatty acid ratio reduces atherosclerotic lesions in Apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation. Arter Throm Vasc Biol. 2010:30:248794.Google Scholar
40. Jumpsen, J, Lien, EL, Goh, YK, Clandinin, MT. Small changes of dietary (n-6) and (n-3)/fatty acid content ratio alter phosphatidylethanolamine and phosphatidylcholine fatty acid composition during development of neuronal and glial cells in rats. J Nutr. 1997;127:72431.Google Scholar
41. Jumpsen, JA, Lien, EL, Goh, YK, Clandinin, MT. During neuronal and glial cell development diet n-6 to n-3 fatty acid ratio alters the fatty acid composition of phosphatidylinositol and phosphatidylserine. Biochim Biophys Acta. 1997;1347:4050.Google Scholar
42. Wainwright, PE, Xing, HC, Mutsaers, L, McCutcheon, D, Kyle, D. Arachidonic acid offsets the effects on mouse brain and behavior of a diet with a low (n-6):(n-3) ratio and very high levels of docosahexaenoic acid. J Nutr. 1997;127:18493.Google Scholar
43. Stockard, JE, Saste, MD, Benford, VJ, Barness, L, Auestad, N, Carver, JD. Effect of docosahexaenoic acid content of maternal diet on auditory brainstem conduction times in rat pups. Dev Neurosci. 2002;22:4949.Google Scholar
44. Ando, S, Tanaka, Y, Toyoda, Y, Kon, K. Turnover of myelin lipids in aging brain. Neurochem Res. 2003;28:513.Google Scholar