Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T03:52:14.989Z Has data issue: false hasContentIssue false

The Impact of Aging on Vasa Nervorum, Nerve Blood Flow and Vasopressin Responsiveness

Published online by Cambridge University Press:  14 September 2018

Mikihiro Kihara*
Affiliation:
Department of Neurology, Kinki University, School of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
Mitsuaki Shioyama
Affiliation:
Department of Neurology, Kinki University, School of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
Kazuto Okuda
Affiliation:
Department of Neurology, Kinki University, School of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
Mitsuo Takahashi
Affiliation:
Department of Neurology, Kinki University, School of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
*
Mikihiro Kihara , Department of Neurology, Kinki University, School of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

Aging impacts microvessels in a number of tissue beds. Vasopressin acts as a vasoconstrictor in most blood vessels but may also cause vasodilation. We evaluated the role of aging and vasopressin in the regulation of nerve blood flow (NBF) in rat peripheral nerve.

Methods:

We undertook a dose-response study to examine the impact of aging on resting NBF and its vasoreactivity to vasopressin. Nerve blood flow was measured using microelectrode hydrogen polarography. Argininevasopressin was administered both intra-arterially and topically.

Results:

In young adult rats (two months old) topical epineurial application of arginine-vasopressin produced a concentration-dependent reduction of NBF (ED50= 3.8 X 10-5 mol/L). Intra-arterial arginine-vasopressin also reduced NBF. Nerve blood flow was lower in aged rats (12 months old) and less responsive to topically applied vasopressin. The aging group had significantly higher concentrations of vasopressin in plasma than did the younger group.

Conclusions:

The results suggest that vasopressin constricts vessels in peripheral nerve and that there is an age related decline in the vasoconstrictive response to vasopressin. There may be a reduction in receptor sensitivity in vascular smooth muscle cells in peripheral nerve with increasing age.

Résumé:

Résumé:Objectif:

Le vieillissement affecte les microvaisseaux d’un certain nombre de lits tissulaires. La vasopressine agit comme vasoconstricteur dans la plupart des vaisseaux sanguins, mais elle peut également causer une vasodilatation. Nous avons évalué le rôle du vieillissement et de la vasopressine dans la régulation du flot sanguin nerveux (FSN) au niveau de nerfs périphériques de rats.

Méthode:

Nous avons effectué une étude doseréponse pour examiner l’impact du vieillissement sur le FSN au repos et sa vasoréactivité à la vasopressine. Le FSN a été mesuré par polarographie au moyen de microélectrodes à hydrogène. De l’arginine-vasopressine a été administrée par voie intra-artérielle et topique.

Résultats:

Chez de jeunes rats adultes (âgés de deux mois), l’application épineurale topique d’arginine-vasopressine a provoqué une réduction du FSN concentrationdépendante (ED50 = 3.8 X10-5 mol/L). L’administration intra-artérielle d’arginine-vasopressine a également réduit le FSN. Le flot sanguin nerveux était moindre chez les rats âgés (12 mois) et moins sensible à la vasopressine topique. Le groupe plus âgé avait des concentrations significativement plus élevées de vasopressine plasmatique que le groupe plus jeune.

Conclusions:

Ces résultats suggèrent que la vasopressine contracte les vaisseaux des nerfs périphériques et qu’il y a un déclin de la réponse vasoconstrictive à la vasopressine lié à l’âge. Il pourrait exister une diminution de la sensibilité du récepteur des cellules musculaires lisses des vaisseaux des nerfs périphériques avec l’âge.

Type
Experimental Neurosciences
Copyright
Copyright © Canadian Neurological Sciences Federation 2002

References

1. Low, PA, Lagerlund, TD, McManis, PG. Nerve blood flow and oxygen delivery in normal, diabetic, and ischemic neuropathy. Int Rev Neurobiol 1989;31:355-438.Google Scholar
2. Kihara, M, Low, PA. Regulation of rat nerve blood flow: role of epineurial-receptors. J Physiol 1990;422:145-152.Google Scholar
3. Zochodne, DW, Low, PA. Adrenergic control of nerve blood flow. Exp Neurol 1995;132:180-185.Google Scholar
4. Kihara, M, Low, PA. Impaired vasoreactivity to nitric oxide in experimental diabetic neuropathy. Exp Neurol 1995;132:180-185.CrossRefGoogle Scholar
5. Zochodne, DW, Ho, LT, Gross, PM. Acute endoneural ischemia induced by epineurial endothelin in rat sciatic nerve. Am J Physiol 1992;263:H1806-H1810.Google Scholar
6. Kihara, M, Mitsui, KM, Mitsui, Y, et al. Altered vasoreactivity to angiotensin II in experimental diabetic neuropathy: role of nitric oxide. Muscle Nerve 1999;22:920-925.Google Scholar
7. Altura, BM, Altura, T. Vascular smooth muscle neurohypophyseal hormones. Fed Proc 1977;36:1853-1860.Google Scholar
8. Sueta, CA, Dusseau, JW, Hutchins, PM. A microcirculatory technique for evaluating intravascular and topical administration of vasoactive agents: response to AVP in the SHR. Microvasc Res 1985;30:354-364.Google Scholar
9. Cosentino, F, Sill, JC, Katusic, ZS. Endothelial L-arginine pathway and relaxations to vasopressin in canine basilar artery. Am J Physiol 1993;264:H412-H418.Google Scholar
10. Suzuki, Y, Satoh, S, Oyama, H, et al. Vasopressin mediated vasodilatation of cerebral arteries. J Auton Nerv Syst 1994;49:5129-5132.Google Scholar
11. Myers, PR, Banitt, PF, Guerra, R, et al. Characteristics of canine coronary resistance arteries: importance of endothelium. Am J Physiol 1989;257:H603-610.Google Scholar
12. Hirsch, AT, Dauz, VJ, Majzoub, JA, et al. Vasopressin-mediated forearm vasodilatation in normal humans; evidence for a vascular vasopressin V2 receptor. J Clin Invest 1989;84:418-426.CrossRefGoogle Scholar
13. Duckeles, SP, Banner, W. Change in vascular smooth muscle reactivity during development. Ann Rev Pharmacol Toxicol 1984;12:S11-S18.Google Scholar
14. Low, PA, Schmelzer, JD, Ward, KK. The effect of age on energy metabolism and resistance to ischemic conduction failure in peripheral nerve. J Physiol 1986;374:263-272.CrossRefGoogle Scholar
15. Kihara, M, Nakasaka, Y, Mitsui, Y, et al. Aging differentially modifies sensitivity of nerve blood flow to vasocontractile agents (endothelin-1, noradrenaline and angiotensin II) in sciatic nerve. Mech Age Develop 2000:114:5-14.CrossRefGoogle Scholar
16. Swanson, LW. Immunohistochemical evidence for a neurophysincontaining autonomic pathway arising in the paraventicular nucleus of the hypothalamus. Brain Res 1977;128:346-353.CrossRefGoogle Scholar
17. Legros, JJ, Gilot, P, Seron, X, et al. Influence of vasopressin on learning and memory. Lancet 1978;41-42.Google Scholar
18. Weingartner, H, Kaye, W, Gold, P, et al. Vasopressin treatment of cognitive dysfunction in progressive dementia. Life Sci 1981;29:27121-27126.Google Scholar
19. Kihara, M, Nickander, KK, Low, PA. The effect of aging on endoneurial blood flow, hyperemic response and oxygen-free radicals in rat sciatic nerve. Brain Res 1991;562:1-5.Google Scholar
20. Ollson, Y, Reese, TS. Permeability of vasa nervosum and perineurium in mouse sciatic nerve studied by fluorescence and electron microscopy. J Neuropathol Exp Neurol 1971;30:105-119.Google Scholar
21. Katusic, ZS. Endothelial L-arginine pathway and regional cerebral arterial reactivity to vasopressin. Am J Physiol 1992;262:H1557-H1562.Google Scholar
22. Liard, JF. L-NAME antagonized vasopressin V2-induced vasodilatation in dogs. Am J Physiol 1994;266:H99-H106.Google Scholar
23. Kihara, M, Low, PA. Vasoreactivity of prostaglandins in rat peripheral nerve. J Physiol (Lond) 1990;422:145-152.CrossRefGoogle Scholar
24. Zochodne, DW, Ho, TL. Influence of perivascular peptides on endoneurial blood flow and microvascular resistance in the sciatic nerve of the rat. J Physiol (Lond) 1991;444:615-630.Google Scholar
25. Handa, RK, Duckels, SP. Age-related changes in adrenergic vasoconstrictor response of the rat hindlimb. Heart Circ Physiol 1987;22:H1566-H1572.Google Scholar
26. Johnson, AG, Crawford, GA, Kelly, D, et al. Arginine vasopressin and osmolality in the elderly. J Am Geriatr Soc 1994;42:399-404.Google Scholar
27. Frolkis, VV, Golovchenko, SF, Medved, VI, et al. Vasopressin and cardiovascular system in ageing. Gerontology 1982;28:290-302.Google Scholar
28. Rondeau, E, de Lima, J, Caillens, H, et al. High plasma antidiuretic hormone in patients with cardiac failure: influence of age. Miner Electrolyte Metab 1982;8:267-274.Google Scholar
29. Duggan, J, Kilfeather, S, Lightman, S, et al. The association of age with plasma arginine vasopressin and plasma osmolality. Age Ageing 1993;8:267-274.Google Scholar
30. Hosoya, M, Ogura, T, Watanabe, H, et al. Autoradiographic localization and age-related changes in vasopressin receptors in spontaneously hypertensive rats. Nephron 1996;72:281-287.CrossRefGoogle Scholar