Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T21:38:55.712Z Has data issue: false hasContentIssue false

Hypothesis: Phylogenetic Diseases of the Nervous System

Published online by Cambridge University Press:  18 September 2015

Harvey B. Sarnat
Affiliation:
Departments of Paediatrics, Pathology, and Clinical Neurosciences, University of Calgary, Faculty of Medicine, Calgary, Alberta
Martin G Netsky
Affiliation:
Department of Pathology (Neuropathology), Vanderbilt University School of Medicine, Nashville, Tennessee, USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A few human diseases may be viewed from a phylogenetic perspective. Some metabolic or degenerative diseases selectively affect recently evolved or exclusively mammalian structures of the brain and spare the older structures. Examples include Krabbe’s leukodystrophy, olivopontocerebellar atrophy, Friedreich’s ataxia, Pick’s disease, and Leber’s optic atrophy. Some pathologic conditions in man are similar to normal anatomy in other species, although the mechanisms may differ. Congenital muscle fiber-type disproportion in rodents, Dandy-Walker cyst in birds, and agenesis of the corpus callosum in marsupials are representative of this category. Loss of basal dendritic spines from pyramidal cells in Pick’s disease is reminiscent of certain large neurons normally found in the cortex of reptiles. Changes in metabolism in the evolution of mammals in general and of man in particular may explain some aspects of’phylogenetic diseases’. Some potential examples are the shift from predominantly phospholipids to galactolipids in myelin composition as mammals evolved, and the greater toxicity of cyanide and other poisons of oxidative metabolism in mammals than in other vertebrates because of less reliance on anaerobic metabolism as an alternative energy source.

Type
Special Features
Copyright
Copyright © Canadian Neurological Sciences Federation 1984

References

Adams, J.H., Blackwood, W., Wilson, J. (1966). Further clinical and pathological observations on Leber’s optic atrophy. Brain, 89:1526.CrossRefGoogle ScholarPubMed
Brooke, M.H. (1973). Congenital fiber type disproportion, In Kakulas, B.A., ed., Clinical Studies in Myology. Amsterdam, Excerpta Medica pp. 147149.Google Scholar
Bruyn, G.W., Went, L.N. (1964). A sex-linked heredodegenerative neurological disorder associated with Leber’s optic atrophy J. Neurol. Sci., 1:5980.Google Scholar
Cajal, S. de Ry. (1968). The Structure of Amnion’s Horn. Charles C. Thomas Publisher, Springfield, Illinois. Translated and republished.Google Scholar
Cammermeyer, J. (1971). Median and caudal apertures in the roof of the fourth ventricles in rodents and primates. J. Comp. Neurol., 141:499512.CrossRefGoogle ScholarPubMed
Cuzner, J.L., Davison, A.N., Gregson, N.A. (1965). The chemical composition of vertebrate myelin and microsomes. J. Neurochem., 12:469481.CrossRefGoogle ScholarPubMed
D’Agostino, A.N., Kernohan, J.W., Brown, J.R. (1963). The Dandy-Walker syndrome. J. Neuropathol. Exp. Neurol., 22:450470.CrossRefGoogle ScholarPubMed
Dehkharghani, F., Sarnat, H.B., Brewster, M.A., Roth, S.I. (1981). Congenital muscle fiber type disproportion in Krabbe’s leukodystrophy. Arch. Neurol. 38:585587.CrossRefGoogle ScholarPubMed
Ebner, F.F., Myers, R.E. (1965). Distribution of corpus callosum and anterior commissure in cat and raccoon. J. Comp. Neurol., 124:353366.CrossRefGoogle Scholar
Ettlinger, G., Blakemore, C.B., Milner, A.D., Wilson, M.J. (1974). Agenesis of the corpus callosum: A further behavioural investigation. Brain, 97:225234.CrossRefGoogle ScholarPubMed
Fardeau, M., Harpey, J.P., Caille, B., Lafourcade, J. (1975). Hypotonies néo-natales avec disproportion congenitale des différents types de fibre musculaire et petitesse relative des fibres de type I. Arch Franc Pédiatr., 32:901914.Google Scholar
Haeckel, E. (1875). Ziele and Wege der heutigen Entwicklungsgeschichte. Jena.Google Scholar
Hanaway, J., Netsky, M.G. (1971). Heterotopias of the inferior olive: Relation to Dandy-Walker malformation and correlation with experimental data. J. Neuropathol. Exp. Neurol., 30:380389.CrossRefGoogle ScholarPubMed
Hart, M.N., Malamud, N., Ellis, W.G. (1972). The Dandy-Walker syndrome. A clinicopathological study based on 28 cases. Neurology, 22:771780.CrossRefGoogle ScholarPubMed
Heath, C.J., Jones, E.G. (1971). Interhemispheric pathways in the absence of a corpus callosum. An experimental study of commissural connections in the marsupial phalanger. J. Anat., 109:253270.Google ScholarPubMed
Jackson, J.H. (1884). Croonian lectures. Brit. Med. J., 1:501, 660, 703.Google ScholarPubMed
Janzer, R.C., Friede, R.L. (1982). Dandy-Walker synsdrome with atresia of the fourth ventricle and multiple rhombencephalic malformations. Acta. Neuropathol. 58:8186.CrossRefGoogle ScholarPubMed
Jones, H.C., Dolman, G.S. (1979). The structure of the roof of the fourth ventricle in pigeon and chick brains by light and electron microscopy. J. Anat., 128:1329.Google ScholarPubMed
Katz, M.J., Lasek, R.J. (1978). Evolution of the nervous system: Role of ontogenetic mechanisms in the evolution of matching populations. Proc. Nat. Acad. Sci. U.S.A. 75:13491352.CrossRefGoogle ScholarPubMed
Loeser, J.D., Alvord, E.C. (1968). Clinicopathological correlations in agensis of the corpus callosum. Neurology, 18:745756.CrossRefGoogle Scholar
Martin, J.J., Clara, R., Ceuterick, Ch., Joris, C. (1976). Is congenital fiber type disproportion a true myopathy? Acta. Neurol. Belg., 76:335344.Google ScholarPubMed
Miyatake, T., Suzuki, K. (1972). Globoid cell leukodystrophy: Additional deficiency of psychosine galactosidase. Biochim. Biophys. Res. Commun., 48:538543.CrossRefGoogle ScholarPubMed
Moberly, W.R. (1968). The metabolic responses of the common iguana, Iguana iguana, to walking and diving. Comp. Biochem. Physiol., 27:2132.CrossRefGoogle Scholar
Meyers, R.E. (1962). Commissural connections between occipital lobes of the monkey. J. Comp. Neurol., 118:116.CrossRefGoogle Scholar
Norman, R.M., Oppenheim, D.R., Tingey, A.H. (1961). Histological and chemical findings in Krabbe’s leukodystrophy. J. Neurol. Neurosurg. Psychiat., 24:223232.CrossRefGoogle Scholar
Norman, R.M., Urich, H. (1958). Cerebellar hypoplasia associated with systemic degeneration in early life. J. Neurol. Neurosurg. Psychiat., 21:159166.CrossRefGoogle ScholarPubMed
Osuntokun, B.O., Aladetoyinbo, A., Adeuja, A.O.G. (1970). Free cyanide levels in tropical ataxia neuropathy. Lancet, 2:372373.CrossRefGoogle Scholar
Pandya, D.N., Vignolo, L.A. (1969), Interhemispheric projections of the parietal lobe in the rhesus monkey. Brain Res., 15:4965.CrossRefGoogle ScholarPubMed
Ramsey, R.B. (1981). Comparative neurochemistry of the vertebrates. In: Sarnat, H.B., Netsky, M.G., Evolution of the Nervous System. Ed. 2 Oxford Univ. Press N.Y., London, pp. 2438.Google Scholar
Roofe, P.G., Matzke, H. A. (1968). Introduction to the study of evolution: Its relationship to neuropathology. In: Minckler, , ed. Pathology of the Nervous System, pp. 1422.Google Scholar
Sarnat, H.B., (1983). Developmental disorders of muscle. In Walton, J.N., Mastaglia, F.L., eds., Skeletal Muscle Pathology. Churchill Livingstone, Edinburgh U.K., (in press).Google Scholar
Sarnat, H.B. (1978). Diagnostic value of the muscle biopsy in the neonatal period. Amer. J. Dis. Child, 132:782785.Google ScholarPubMed
Sarnat, H.B., Netsky, M.G. (1981). Evolution of the Nervous System, Second edition. Oxford University Press N.Y., London.Google Scholar
Smith, M.E. (1967). The metabolism of myelin lipids. Adv. Lipid Res., 5:241278.CrossRefGoogle Scholar
Suzuki, K., Grover, W.D. (1970). Krabbe’s leukodystrophy (globoid cell leukodystrophy): An ultrastructural study. Arch. Neurol., 22:385396.CrossRefGoogle Scholar
Suzuki, K., Suzuki, Y. (1970). Globoid cell leukodystrophy (Krabbe’s disease): Deficiency of galactocerebroside beta-galactosidase. Proc. Nat. Acad. Sci. U.S.A., 66:302309.CrossRefGoogle Scholar
Tornheim, P.A., Foltz, F.M. (1979). Circulation of cerebrospinal fluid in the bullfrog, Rana catesbiana. Anat. Rec, 194:389404.CrossRefGoogle ScholarPubMed
Ulinski, P.S. (1977). Intrinsic organization of snake medial cortex: An electron microscopic and Golgi study. J. Morphol., 152:247280.CrossRefGoogle ScholarPubMed
Ward, A.A. Jr., Wheatley, M.D. (1947). Sodium cyanide: sequence of changes in activity induced at various levels of the central nervous system. J. Neuropathol. Exp. Neurol., 6:292294.CrossRefGoogle ScholarPubMed
Wechsler, A.F., Verity, M.A., Rosenchein, S., Fried, I., Scheibel, A.B. (1982). Pick’s disease. A clinical, computed tomographic, and histologic study with Golgi impregnation observations. Arch. Neurol., 39:287290.CrossRefGoogle ScholarPubMed
Woodworth, J.A., Beckett, R.S., Netsky, M.G. (1959). A composite of hereditary ataxias. A familial disorder with features of olivopontocerebellar atrophy, Leber’s optic atrophy, and Friedreich’s ataxia. A.M.A. Arch. Int. Med., 104:594606.CrossRefGoogle Scholar
Welker, W.I., Seidenstein, S. (1959). Somatic sensory representations in the cerebral cortex of the raccoon (Procyon lotor). J. Comp. Neurol., 111:469501.CrossRefGoogle Scholar
Zettner, A., Netsky, M.G. (1960). Lipoma of the corpus callosum. J. Neuropathol. Exp. Neurol., 19:305319.CrossRefGoogle ScholarPubMed