Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T19:56:04.876Z Has data issue: false hasContentIssue false

Homovanillic Acid in the Cerebrospinal Fluid of Parkinsonian Patients

Published online by Cambridge University Press:  18 September 2015

L. Cunha*
Affiliation:
Clinica Neurológica, Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
A.F. Gonçalves
Affiliation:
Clinica Neurológica, Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
C. Oliveira
Affiliation:
Clinica Neurológica, Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
M. Dinis
Affiliation:
Clinica Neurológica, Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
R. Amaral
Affiliation:
Clinica Neurológica, Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
*
Clinica Neurológica, Hospitais da Universidade de Coimbra, 3000 – Coimbra, Portugal
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Determinations of CSF HVA before and after Probenecid administration were made in 41 patients with Parkinson’s disease. The means of HVA concentration were lower than those of controls but no correlation with clinical data was found. A negative correlation was demonstrated between post-probenecid HVA levels and subsequent score improvement with L-DOPA at 3,6 and 12 months. Post-probenecid HVA levels suggest that there are distinct forms of parkinsonism and could predict the response to L-DOPA therapy.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1983

References

Aizenstein, M.L., and Korf, J. (1978). Aspects of influx and efflux of HVA of rat CSF. Brain Res., 149:129140.CrossRefGoogle Scholar
Ashcroft, G.K., Dow, R.C., Moir, A.T.B. (1968). The active transport of 5-hydroxyindol-3-ylacetic acid and 3-methoxy-4-hydroxyphenylacetic acid from a recirculatory perfusion system of the cerebral ventricles of the unanaesthetized dog. J. Physiol. (Lond), 199:397425.CrossRefGoogle Scholar
Barbeau, A. (1976). The nonsurgical treatment of “Parkinson’s disease”: a personal view. Current controversies in Neurosurgery (ed. by Morley, T.P.) W.B. Saunders Company, pp. 419434.Google Scholar
Bernheimer, H., and Hornykiewicz, O. (1964). Das verhalten des Dopamin-metaboliten Homovanillinsaure im gehirn von normalen und Parkinson-kranken Menschen. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak., 247: 305.CrossRefGoogle Scholar
Bernheimer, H., and Hornykiewicz, O. (1965). Herabgesetzte konzentration der homovanillinsaure im gehirn von parkinsonkraken menschen als ausdruck der storung des zentralen dopaminstoffwechsels. Klin. Wschr, 43:711715.CrossRefGoogle Scholar
Bøettcher, J. (1975). Morphology of the basal ganglia in Parkinson’s disease. Acta Neurol. Scand., Suppl. 62, 52.Google Scholar
Bowers, M.B. Jr., and Van Woert, M.H. (1972). The probenecid test in Parkinson’s disease. Lancet, 2:926927.CrossRefGoogle ScholarPubMed
Chase, T.N., and Ng, L.K.Y. (1971). Probenecid test in Parkinson’s disease. Lancet, 2:12651266.CrossRefGoogle ScholarPubMed
Chase, T.N., and Ng, L.K.Y. (1972). Central monoamine metabolism in Parkinson’s disease. Arch. Neurol. Chicago, 27:486491.Google Scholar
Cunha, L., Gonçalves, A.F., Diniz, M., Amaral, R., Ferro, M.A. (1982). Problemas na terapêutica do parkinsonismo pela L-DOPA. Psiquiatria Clinica. In Press.Google Scholar
Davidson, D.L.W., Yates, C.M., Mawdsley, C., Pullar, I.A., Wilson, H. (1977). CSF studies on the relationship between Dopamine and 5-Hydroxytryptamine in parkinsonism and other movement disorders. J. Neurol. Neurosurg. Psychiatry, 40:11361141.CrossRefGoogle ScholarPubMed
Duvoisin, R.C. (1971). The evaluation of extrapiramidal disease. Monoamines noyaux gris centraux et syndrome de Parkinson. J. de Ajuriaguerra. Ed. Paris: Masson et Cie, 313326.Google Scholar
Ehringer, H., Hornykiewicz, O. (1960). Verteilung von Noradrenalin und Dopamine (3-Hydroxytryramine) im Gehirn des Menschen und ihr Verhalfen bei Erkrankungen des extrapyramidalen system. Klin. Wschr.; 38:1236.CrossRefGoogle Scholar
Forn, J. (1972). Active transport of 5-Hydroxindoleacetic acid by the rabbit choroid plexus in vitro. Blockade by Probenecid and metabolic inhibitors. Biochem. Pharmac. 21:619624.CrossRefGoogle Scholar
Forno, L.S., and Alvord, E.C. (1971). The pathology of Parkinsonism. Recent advances in Parkinson’s disease. Edit, by McDowel, F.H. and Markham, C.H., Blackwell Scientific Publications, Oxford, pp. 131161.Google Scholar
Garelis, E., Sourkes, T.L. (1973). Sites of origin in central nervous system of monoamine metabolites measured in cerebrospinal fluid. J. Neurol. Neurosurg. Psychiatry. 36:625629.CrossRefGoogle Scholar
Gerbod, F.A., Bowers, M.D. (1968). Measurement of acid monoamine metabolites in human and animal cerebrospinal fluid. J. Neurochemistry, 15:10531055.CrossRefGoogle Scholar
Godwin-Austen, R.B., Kantamaneni, B.D., Curzon, G. (1971). Comparison of benefit from L-DOPA in Parkinsonism with increase of amine metabolites in the CSF. J. Neurol. Neurosurg. Psychiat., 34:219223.CrossRefGoogle ScholarPubMed
Gonçalves, A.F., Cunha, L., Diniz, M., Amaral, R., Ferro, M.A. (1981). Alguns aspectos do tratamento do parkinsonismo. Reunião Sociedade Portuguesa Neurologia e Psiquiatria. Coimbra, 1981.Google Scholar
Granerus, A.K., Carlsson, A., Svanborg, A. (1979). The aging neuron. Influence on symptomatology and therapeutic response in Parkinson’s symptoms. Advances in Neurobiology (Eds. Poirier, L.J., Sourkes, T.L., Bédard, P.J.), Vol. 24, pp. 327334.Google Scholar
Guldberg, H.C., Ashcroft, G.W., Crawford, T.B.B. (1966). Concentrations of 5-Hydroxyindoleacetic acid and homovanillic acid in the cerebrospinal fluid of the dog before and during treatment with probenecid. Life Sciences, 5:15701575.CrossRefGoogle ScholarPubMed
Guldberg, H.C., Turner, J., Hanieh, A., Ashcroft, G.W., Crawford, T.C., Perry, W., and Gillinghan, F.J., (1967). On the occurrence of HVA and 5-HIAA in the ventricular CSF of patients suffering from Parkinsonism. Confin. Neurol. (Basel) 29:73.CrossRefGoogle Scholar
Gumpert, E.J.N., Sharp, D.M. and Curzon, G. (1973). Amine metabolites in the cerebrospinal fluid in Parkinson’s disease and the response to L-DOPA. J. Neurol. Sci. 19:112.CrossRefGoogle Scholar
Jéquier, E., and Dufresne, J.J. (1972). Biochemical investigations in patients with Parkinson’s disease treated with L-DOPA. Neurology 22:1521.CrossRefGoogle ScholarPubMed
Johansson, B., and Roos, B.E. (1967). 5-Hydroxyindoleacetic acid and homovanillic acid levels in the cerebrospinal fluid of healthy volunteers and patients with Parkinson’s Syndrome. Life Sci. 6:14491454.CrossRefGoogle ScholarPubMed
Kartzinel, R., Ebert, M., Chase, T. (1976). Intravenous probenecid loading. Effects on plasma and CSF probenecid levels and on monoamine metabolites in CSF Neurology, 26:992996.Google Scholar
Korf, J., Van Praag, H.M., Schut, D., Nienhuis, R.J., Lakke, J.P.W.F. (1974). Parkinson’s disease and amine metabolites in cerebrospinal fluid: implications for L-DOPA therapy. Europ. Neurol., 12:340350.CrossRefGoogle ScholarPubMed
Lakke, J.P., Korf, J. and Van Praag, H.M. (1971). Predicting response to levodopa. Lancet, 2:164165.CrossRefGoogle ScholarPubMed
Lakke, J.P., Korf, J., Van Praag, H.M., Minderhoud, J., Schut, T. (1973). Clinical significance of Probenecid test. Lancet, 614615.Google ScholarPubMed
Lakke, J.P., Nienhuis, R.J., Schut, T. and Korf, J. (1974). The probenecid test and the effect of L-DOPA treatment: clinical application of the probenecid test and its limitations in disorders of the Basal Ganglia. Current Concepts in the Treatment of Parkinsonism, MD Yahr. New York: Raven Press, 3760.Google Scholar
Miachon, S., Dalmaz, Y., Cottet-Emard, J.M., Peyrin, L. (1974). Cerebrospinal homovanillic acid and Parkinsonism. Biomedicine, 20:303308.Google Scholar
Moir, A.T.B., Ashcroft, G.M., Crawford, T.B.B., Eclieston, D., Guldberg, H.C. (1970). Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain. Brain, 93:357368.Google ScholarPubMed
Olsson, R., and Roos, B.E. (1968). Concentrations of 5-hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid after treatment with probenecid in patients with Parkinson’s disease. Nature, 219:502503.CrossRefGoogle ScholarPubMed
Papeschi, R., Molina-Negro, D., Sourkes, T.L., Hardy, J., and Bertrand, C. (1970). Concentrations of homovanillic acid in the ventricular fluid of patients with Parkinson’s disease and other dyskinesias. Neurology, 20:991995.CrossRefGoogle ScholarPubMed
Rinne, U.K., and Sonninen, V. (1972). Acid monoamine metabolites in the cerebrospinal fluid of patients with Parkinson’s disease. Neurology, 22:6267.CrossRefGoogle ScholarPubMed
Rinne, U.K., Sonninen, V. and Siirtola, T. (1973). Acid monoamine metabolites in the CSF of Parkinsonian patients treated with Levodopa alone or combined with a decarboxylase inhibitor. Europ. Neurol. 9:349362.CrossRefGoogle ScholarPubMed
Roos, B.E. (1971). Metabolites of monoamines in the cerebrospinal fluid (CSF). Monoamines, Noyaux Gris Centraux et Syndrome de Parkinson. Ed. J. de Ajuriaguerra, Paris: Masson et Cie, 119128.Google Scholar
Sourkes, T.L. (1973). Enzymology and sites of action of monoamines in the central nervous system. Advances in Neurology, 2:1336. New York: Raven Press.Google Scholar
Weiner, W.I. and Klawans, H.L. (1973). Failure of cerebrospinal fluid homovanillic acid to predict levodopa response in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 36:747752.Google ScholarPubMed
Wightman, R.M., Strope, E., Plotsky, P., Adams, R.N. (1978). In vivo voltammetry: monitoring of Dopamine metabolites in CSF following release by electrical stimulation. Brain Res., 159:5568.CrossRefGoogle ScholarPubMed
Wolfson, L.I., Katzman, R., Escriva, A. (1978). Clearance of amine metabolites from the cerebrospinal fluid: The brain as a “sink”. Neurology, 24:772779.CrossRefGoogle Scholar