Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T09:46:38.120Z Has data issue: false hasContentIssue false

Evidence for an Altered Physical State of Membrane Proteins in Erythrocytes in Friedreich's Ataxia

Published online by Cambridge University Press:  18 September 2015

D. A. Butterfield
Affiliation:
Departments of Chemistry, Neurology and Pathology, University of Kentucky, Lexington, Kentucky and the Department of Neurobiology, Clinical Research Institute of Montreal
P. K. Leung
Affiliation:
Departments of Chemistry, Neurology and Pathology, University of Kentucky, Lexington, Kentucky and the Department of Neurobiology, Clinical Research Institute of Montreal
W. R. Markesbery
Affiliation:
Departments of Chemistry, Neurology and Pathology, University of Kentucky, Lexington, Kentucky and the Department of Neurobiology, Clinical Research Institute of Montreal
A. Barbeau
Affiliation:
Departments of Chemistry, Neurology and Pathology, University of Kentucky, Lexington, Kentucky and the Department of Neurobiology, Clinical Research Institute of Montreal
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electron spin resonance, scanning electron microscopic, and SDS-polyacrylamide gel electrophoretic studies of erythrocytes in Friedreich's ataxia have been performed. No alteration in the physical state of membrane lipids, in morphology, or in the staining profile of erythrocytes in Friedreich's ataxia could be demonstrated. An altered conformation and I or organization of proteins in ery-throcyte membranes in this disorder was suggested by spin labeling studies

(P < 0.025), favoring the possibility of a generalized membrane abnormality in Friedreich's ataxia. These findings are discussed in relation to other inherited neurological diseases where similar studies have been performed.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1979

References

Barbeau, A. (1976). Friedreich's ataxia 1976—an overview. Can. J. Neurol. Sci. 3, 389397.CrossRefGoogle ScholarPubMed
Berliner, L. J. (ed.) (1976). Spin Labeling — Theory and Applications, Academic Press, New York.Google Scholar
Brown, H. D., Chattpadhyay, S. K., and Patel, A. B. (1967). Erythrocyte abnormality in human myopathy. Science 157, 15771578.Google ScholarPubMed
Brownlee, K. A. (1960). Statistical Theory and Methodology in Science and Engineering, John Wiley, New York.Google Scholar
Butterfield, D. A. (1977a). Electron spin resonance studies of erythrocyte membranes in muscular dystrophy. Accounts Chem. Res. 10, 111116.Google Scholar
Butterfield, D.A. (1977b). Electron spin resonance investigations of membrane proteins in erythrocyteś in muscle diseases: Duchenne and myotonic muscular dystrophy and congenital myotónia. Biochim. Biophys, Acta 470, 17.Google ScholarPubMed
Butterfield, D. A., OESWE1N, J. Q., and Markesbery, W. R. (1977), Electron spin resonance study of membrane protein alterations in erythrocyteś in Huntingtons disease. Nature 267, 453455.Google Scholar
Butterfield, D. A.Oeswein, J. Q.Prunty, M. E., Hisle, K. C. and Markesbery, W. R. (1978). Increased sodium plus potassium adenosine triphos-phatase activity in erythrocyte membranes in Huntingtons disease. Ann. Neurol. 4, 6062.Google Scholar
Butterfield, D. A., Purdy, M. J., and Markesbery, W. R. (1979). Electron spin resonance, hematological, and deforma ability studies of erythrocyteś from patients with Huntingtons disease. Biochim. Biophys. Acta, in press.Google Scholar
Chapman, D., Barratt, M. D., and Kamat, V. B. (1969). A spin label study of erythrocyte membranes. Biochim. Biophys. Acta 173, 154157.CrossRefGoogle ScholarPubMed
Fairbanks, G., Steck, T. L. and Wallach, D. F. H. (1971). Electrophore-tic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10, 26062617.CrossRefGoogle ScholarPubMed
Huang, Y. S., Nestruck, A. C., Barbeau, A., Bouchard, J. P., and Davignon, J. (1978). Plasma lipids and lipoproteins in Friedreich's ataxia and familial spastic ataxia — evidence for an abnormal composition of high density lipoproteins. Can. J. Neurol. Sci. 5, 149156.CrossRefGoogle ScholarPubMed
Hubbell, W. L., and McConnell, (1971). Molecular Motion In Spin Labeled Phospho-Lipids And Membranes. J. Amer. Chem. Soc. 93, 314326.Google Scholar
Huxtable, R. (1976). Metabolism and function of taurine in the heart. In: Taurine, Raven Press, (Huxtable, R. and Barbeau, A., eds.), pp 99119.Google Scholar
Jost, P. C., Libertini, L. J., Herbert, V. C., and Griffith, O. H. (1971). Lipid spin labels in lecithin multilayers: a study of motion along fatty acid chains. J. Mol. Biol. 59, 7798.CrossRefGoogle ScholarPubMed
Jost, P. C., Nadakavukaren, K. K., and Griffith, Q. H. (1977). Phosphatidyl-choline exchange between the boundary lipid arid bilayer domains in cyt oc hrome oxidase containing membranes.Google Scholar
Lemieux, B.:, Barbeau, A., Beroniade, V., Shapcott, D., Breton, G., Geoffroy, G., and Melancon, S. (1976). Amino acid metabolism in Friedreich's ataxia. Can. J. Neurol. Sci. 3, 373378.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. C.,,and Randall, R. J. (1951). Protein measurement with Folin phenol reagent. J. Biol. Chem. 193* 265275,Google ScholarPubMed
Markesbery, W. R. and Butterfield, D. A. (1977). Scanning electron microscopy studies of Crythrocytes in Huntingtons disease. Biochem. Biophys. Res. Commun. 78, 560564.CrossRefGoogle Scholar
McConnell, H. M., and McFarland, B. G., (1970). The chemistry and physics of spin labels. Quart. Rev. Biophys. 3, 91136.CrossRefGoogle ScholarPubMed
Mason, R. P., Giavedoni, E. B., and Dalmasso, A. P. (1977). Complement-induced decrease in membrane mobility: introducing a more sensitive index of spin-label motion. Biochemistry 16, 11961201.CrossRefGoogle ScholarPubMed
Miller, S. E., Roses, A. D., and Appel, S. H. (1976). Scanning electron microscopy studies of erythrocyteś in muscular dystrophy. Arch Neurol. 33, 172174.CrossRefGoogle ScholarPubMed
Ohnishi, S., and Ito, T. (1974). Calcium induced phase separations in phosphatidyl-serine-phosphatidylcholine membranes. Biochemistry 73, 881887.Google Scholar
Roses, A. D., and Appel, S. H. (1975). Phošhorylation of component a of the human erythrocyte membrane in myotonic muscular dystrophy. J. Membr. Biol. 20, 5158.CrossRefGoogle Scholar
Roses, A. D., Herbstreith, M. H., and Appel, S. H. (1975). Membrane protein kinase alteration in Duchenne muscular dystrophy. Nature 254, 350351.CrossRefGoogle ScholarPubMed
Wilkerson, L. S., Perkins, R. C., Roelofs, R., Swift, L., Dalton, L. R., and Park, J. H. (1978). Erythrocyte membrane abnormalities in Duchenne muscular dystrophy monitored by saturation transfer electron paramagnetic resonance spectroscopy. Proc. Nat. Acad. Sci. U.S.A. 75, 838841.CrossRefGoogle ScholarPubMed