Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T16:43:20.748Z Has data issue: false hasContentIssue false

Etiology of Parkinson's Disease

Published online by Cambridge University Press:  02 December 2014

Zhigao Huang
Affiliation:
Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada
Raúl de la Fuente-Fernández
Affiliation:
Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada
A. Jon Stoessl
Affiliation:
Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is growing recognition that Parkinson's disease (PD) is likely to arise from the combined effects of genetic predisposition as well as largely unidentified environmental factors. The relative contribution of each varies from one individual to another. Even in situations where more than one family member is affected, the predominant influence may be environmental. Although responsible for only a small minority of cases of PD, recently identified genetic mutations have provided tremendous insights into the basis for neurodegeneration and have led to growing recognition of the importance of abnormal protein handling in Parkinson's as well as other neurodegenerative disorders. Abnormal protein handling may increase susceptibility to oxidative stress; conversely, numerous other factors, including oxidative stress and impaired mitochondrial function can lead to impaired protein degradation. A limited number of environmental factors are known to be toxic to the substantia nigra; in contrast, some factors such as caffeine intake and cigarette smoking may protect against the development of PD, although the mechanisms are not established. We review the various genetic and environmental factors thought to be involved in PD, as well as the mechanisms that contribute to selective nigral cell death.

Résumé

RÉSUMÉ

L’opinion qui préut actuellement est que la maladie de Parkinson rélte de l’interaction entre une présposition gétique et des facteurs environnementaux qui demeurent en grande partie inconnus. La contribution relative de chacun varie d’un individu à’autre. Mê dans les familles oùs d’un membre est atteint, l’influence préminante peut êe environnementale. Bien qu’elles soient en cause dans seulement une minoritée cas de la maladie, des mutations gétiques identifié rémment ont fourni des indices préeux sur l’éologie de la dénéscence neuronale et ont permis de reconnaîe l’importance d’un mébolisme protéue anormal dans la maladie de Parkinson ainsi que dans d’autres maladies neurodénétrices. Un mébolisme protéue anormal peut augmenter la susceptibilitéu stress oxydatif; à’inverse, plusieurs autres facteurs, dont le stress oxydatif et une fonction mitochondriale altée, peuvent induire une altétion de la déadation protéue. On connaîl’effet toxique d’un certain nombre de facteurs environnementaux sur la substance noire; par contre, certains facteurs tels la consommation de cafée et le tabagisme pourraient protér de la maladie de Parkinson, bien que les ménismes n’en soient pas éblis. Nous revoyons les diffénts facteurs gétiques et environnementaux qu’on pense impliquédans la maladie de Parkinson ainsi que les ménismes qui contribuent àa mort séctive de cellules de la substance noire.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

1. Tanner, CM, Hubble, JP, Chan, P. Epidemiology and genetics of Parkinson’s disease. In: Watts, RL, Koller, WC, (Eds). Movement Disorders. New York: McGraw-Hill, 1997: 137152.Google Scholar
2. de Rijk, MC, Breteler, MM, Graveland, GA, et al. Prevalence of Parkinson’s disease in the elderly: the Rotterdam Study. Neurology 1995; 45(12):21432146.Google Scholar
3. Goldman, SM, Tanner, CM. Etiology of Parkinson’s disease. In: Jankovic, J, Tolosa, E, (Eds). Parkinson’s Disease and Movement Disorders. Baltimore, Maryland: Williams and Wilkins, 1998: 133158.Google Scholar
4. Polymeropoulos, MH, Lavedan, C, Leroy, E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276(5321): 20452047.Google Scholar
5. Kitada, T, Asakawa, S, Hattori, N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392(6676):605608.CrossRefGoogle Scholar
6. Lai, BCL, Marion, SA, Teschke, K, Tsui, JKC. Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism and Related Disorders 2002; 8:297309.CrossRefGoogle ScholarPubMed
7. Gorell, JM, Johnson, CC, Rybicki, BA, et al. Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 1997; 48(3):650658.Google Scholar
8. Gorell, JM, Johnson, CC, Rybicki, BA, Peterson, EL, Richardson, RJ. The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998; 50(5):13461350.Google Scholar
9. Zorzon, M, Capus, L, Pellegrino, A, Cazzato, G, Zivadinov, R. Familial and environmental risk factors in Parkinson’s disease: a case-control study in north-east Italy. Acta Neurol Scand 2002; 105(2):7782.Google Scholar
10. Calne, DB, Langston, JW. Aetiology of Parkinson’s disease. Lancet 1983; 2(8365–66):14571459.CrossRefGoogle ScholarPubMed
11. Schoenberg, BS, Anderson, DW, Haerer, AF. Prevalence of Parkinson’s disease in the biracial population of Copiah County, Mississippi. Neurology 1985; 35(6):841845.Google Scholar
12. Jendroska, K, Olasode, BJ, Daniel, SE, et al. Incidental Lewy body disease in black Africans. Lancet 1994; 344(8926):882883.Google Scholar
13. Wang, SJ, Fuh, JL, Teng, EL, et al. A door-to-door survey of Parkinson’s disease in a Chinese population in Kinmen. Arch Neurol 1996; 53(1):6671.Google Scholar
14. Zhang, ZX, Roman, GC. Worldwide occurrence of Parkinson’s disease: an updated review. Neuroepidemiology 1993; 12(4):195208.Google Scholar
15. Chen, RC, Chang, SF, Su, CL, et al. Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology 2001; 57(9):16791686.CrossRefGoogle ScholarPubMed
16. Payami, H, Zareparsi, S, James, D, Nutt, J. Familial aggregation of Parkinson’s disease: a comparative study of early- onset and late-onset disease. Arch Neurol 2002; 59(5):848850.Google Scholar
17. de la Fuente-Fernandez, R, Calne, DB. Familial aggregation of Parkinson’s disease. N Engl J Med 2001; 344(15):1168.Google Scholar
18. Calne, S, Schoenberg, B, Martin, W, et al. Familial Parkinson’s disease: possible role of environmental factors. Can J Neurol Sci 1987; 14(3):303305.Google Scholar
19. Sveinbjornsdottir, S, Hicks, AA, Jonsson, T, et al. Familial aggregation of Parkinson’s disease in Iceland. N Engl J Med 2000; 343(24):17651770.CrossRefGoogle ScholarPubMed
20. Gasser, T, Muller-Myhsok, B, Wszolek, ZK, et al. A susceptibility locus for Parkinson’s disease maps to chromosome 2p13. Nat Genet 1998; 18(3):262265.Google Scholar
21. Kruger, R, Kuhn, W, Muller, T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998; 18(2):106108.Google Scholar
22. Tanner, CM, Ottman, R, Goldman, SM, et al. Parkinson disease in twins: an etiologic study. JAMA 1999; 281(4):341346.CrossRefGoogle ScholarPubMed
23. Piccini, P, Burn, DJ, Ceravolo, R, Maraganore, D, Brooks, DJ. The role of inheritance in sporadic Parkinson’s disease: evidence from a longitudinal study of dopaminergic function in twins. Ann Neurol 1999; 45(5):577582.Google Scholar
24. de la Fuente-Fernandez, R. Maternal effect on Parkinson’s disease. Ann Neurol 2000; 48(5):782787.Google Scholar
25. de la Fuente-Fernandez, R, Calne, DB. Evidence for environmental causation of Parkinson’s disease. Parkinsonism and Related Disorders 2002; 8:235241.CrossRefGoogle ScholarPubMed
26. Dawson, VL. Neurobiology. Of flies and mice. Science 2000; 288(5466):631632.Google Scholar
27. Olanow, CW, Tatton, WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999; 22:123144.CrossRefGoogle ScholarPubMed
28. Spillantini, MG, Goedert, M. Tau and Parkinson disease. JAMA 2001; 286(18):23242326.Google Scholar
29. Spillantini, MG, Schmidt, ML, Lee, VM, et al. Alpha-synuclein in Lewy bodies. Nature 1997; 388(6645):839840.CrossRefGoogle ScholarPubMed
30. Leroy, E, Boyer, R, Auburger, G, et al. The ubiquitin pathway in Parkinson’s disease. Nature 1998; 395(6701):451452.CrossRefGoogle ScholarPubMed
31. Farrer, M, Gwinn-Hardy, K, Muenter, M, et al. A chromosome 4p haplotype segregating with Parkinson’s disease and postural tremor. Hum Mol Genet 1999; 8(1):8185.CrossRefGoogle ScholarPubMed
32. Valente, EM, Bentivoglio, AR, Dixon, PH, et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 2001; 68(4):895900.Google Scholar
33. van Duijn, CM, Dekker, MC, Bonifati, V, et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet 2001; 69(3):629634.CrossRefGoogle ScholarPubMed
34. Funayama, M, Hasegawa, K, Kowa, H, et al. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 2002; 51(3):296301.CrossRefGoogle ScholarPubMed
35. Scott, WK, Nance, MA, Watts, RL, et al. Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA 2001; 286(18):22392244.Google Scholar
36. Mouradian, MM. Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology 2002; 58(2):179185.CrossRefGoogle ScholarPubMed
37. Shastry, BS. Parkinson disease: etiology, pathogenesis and future of gene therapy. Neurosci Res 2001; 41(1):512.Google Scholar
38. Gasser, T. Genetics of Parkinson’s disease. J Neurol 2001; 248(10):833840.CrossRefGoogle ScholarPubMed
39. Vaughan, JR, Davis, MB, Wood, NW. Genetics of parkinsonism: a review. Ann Hum Genet 2001; 65(Pt 2):111126.Google Scholar
40. Jenner, P, Olanow, CW. Understanding cell death in Parkinson’s disease. Ann Neurol 1998; 44(3 Suppl 1):S72-S84.Google Scholar
41. Ciechanover, A, Schwartz, AL. The ubiquitin-proteasome pathway: the complexity and myriad functions of protein death. Proc Natl Acad Sci USA 1998; 95(6):27272730.CrossRefGoogle Scholar
42. Clayton, DF, George, JM. Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res 1999; 58(1):120129.Google Scholar
43. Spillantini, MG, Crowther, RA, Jakes, R, Hasegawa, M, Goedert, M. Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 1998; 95(11):64696473.Google Scholar
44. Stefanis, L, Larsen, KE, Rideout, HJ, Sulzer, D, Greene, LA. Expression of A53Tmutant but not wild-type alpha-synucleinin PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 2001; 21(24):95499560.Google Scholar
45. Tofaris, GK, Layfield, R, Spillantini, MG. Alpha-synuclein metabolism and aggregation is linked to ubiquitin- independent degradation by the proteasome. FEBS Lett 2001; 509(1):2226.Google Scholar
46. Masliah, E, Rockenstein, E, Veinbergs, I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000; 287(5456):12651269.Google Scholar
47. Feany, MB, Bender, WW. A Drosophila model of Parkinson’s disease. Nature 2000; 404(6776):394398.Google Scholar
48. Kanda, S, Bishop, JF, Eglitis, MA, Yang, Y, Mouradian, MM. Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation. Neuroscience 2000; 97(2):279284.Google Scholar
49. Giasson, BI, Duda, JE, Murray, IV, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 2000; 290(5493):985989.CrossRefGoogle ScholarPubMed
49a. Xu, J, Kao, S-Y, Lee, FJS, et al. Dopamine-dependent neurotoxicity of a-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 2002; 8(6): 600606.Google Scholar
50. Takahashi, H, Ohama, E, Suzuki, S, et al. Familial juvenile parkinsonism: clinical and pathologic study in a family. Neurology 1994; 44(3 Pt 1): 437441.Google Scholar
51. Hedrich, K, Marder, K, Harris, J, et al. Evaluation of 50 probands with early-onset Parkinson’s disease for parkin mutations. Neurology 2002; 58(8): 12391246.Google Scholar
52. Zhang, Y, Gao, J, Chung, KK, et al. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 2000; 97(24): 1335413359.Google Scholar
53. Imai, Y, Soda, M, Inoue, H, et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of parkin . Cell1 2001; 105(7): 891902.Google Scholar
54. Shimura, H, Schlossmacher, MG, Hattori, N, et al. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 2001; 293(5528): 263269.Google Scholar
55. Tanner, CM, Chen, B, Wang, WZ, et al. Environmental factors in the etiology of Parkinson’s disease. Can J Neurol Sci 1987; 14(3 Suppl): 419423.Google Scholar
56. Golbe, LI, Langston, JW. The etiology of Parkinson’s disease: new directions for research. In: Jankovic, J, Tolosa, E, (Eds). Parkinson’s Disease and Movement Disorders. Baltimore, Maryland: Williams and Wilkins, 1993: 93101.Google Scholar
57. Rajput, AH, Uitti, RJ, Stern, W, et al. Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson’s disease. Can J Neurol Sci 1987; 14(3 Suppl): 414418.Google Scholar
58. Fall, PA, Fredrikson, M, Axelson, O, Granerus, AK. Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case-control study in southeastern Sweden. Mov Disord 1999; 14(1): 2837.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
59. Anderson, C, Checkoway, H, Franklin, GM, et al. Dietary factors in Parkinson’s disease: the role of food groups and specific foods. Mov Disord 1999; 14(1): 2127.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
60. Johnson, CC, Gorell, JM, Rybicki, BA, Sanders, K, Peterson, EL. Adult nutrient intake as a risk factor for Parkinson’s disease. Int J Epidemiol 1999; 28(6): 11021109.Google Scholar
61. Menegon, A, Board, PG, Blackburn, AC, Mellick, GD, Le Couteur DG. Parkinson’s disease, pesticides, and glutathione transferase polymorphisms. Lancet 1998; 352(9137): 13441346.Google Scholar
62. Priyadarshi, A, Khuder, SA, Schaub, EA, Shrivastava, S. A meta-analysis of Parkinson’s disease and exposure to pesticides. Neurotoxicology 2000; 21(4): 435440.Google Scholar
63. Ritz, B, Yu, F. Parkinson’s disease mortality and pesticide exposure in California 1984–1994. Int J Epidemiol 2000; 29(2): 323329.Google Scholar
64. Betarbet, R, Sherer, TB, MacKenzie, G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000; 3(12): 13011306.Google Scholar
65. Langston, JW, Ballard PTetrud, JW, Irwin, I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219(4587): 979980.Google Scholar
66. Brownell, AL, Jenkins, BG, Isacson, O. Dopamine imaging markers and predictive mathematical models for progressive degeneration in Parkinson’s disease. Biomed Pharmacother 1999; 53(3): 131140.Google Scholar
67. Gorell, JM, Johnson, CC, Rybicki, BA, et al. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 1999; 20(2–3): 239247.Google Scholar
68. Semchuk, KM, Love, EJ, Lee, RG. Parkinson’s disease: a test of the multifactorial etiologic hypothesis. Neurology 1993; 43(6): 11731180.Google Scholar
69. Vieregge, P, Heinzow, B, Korf, G, et al. Long-term exposure to manganese in rural well water has no neurological effects. Can J Neurol Sci 1995; 22(4): 286289.Google Scholar
70. Wang, WZ, Fang, XH, Cheng, XM, Jiang, DH, Lin, ZJ. A case- control study on the environmental risk factors of Parkinson’s disease in Tianjin, China. Neuroepidemiology 1993; 12(4): 209218.Google Scholar
71. Checkoway, H, Powers, K, Smith-Weller, T, et al. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 2002; 155(8): 732738.Google Scholar
72. Gorell, JM, Rybicki, BA, Johnson, CC, Peterson, EL. Smoking and Parkinson’s disease: a dose-response relationship. Neurology 1999; 52(1): 115119.Google Scholar
73. Kuopio, AM, Marttila, RJ, Helenius, H, Rinne, UK. Environmental risk factors in Parkinson’s disease. Mov Disord 1999; 14(6): 928939.Google Scholar
74. Preux, PM, Condet, A, Anglade, C, et al. Parkinson’s disease and environmental factors. Matched case-control study in the Limousin region, France. Neuroepidemiology 2000; 19(6): 333337.Google Scholar
75. Mayeux, R, Tang, MX, Marder, K, Cote, LJ, Stern, Y. Smoking and Parkinson’s disease. Mov Disord 1994; 9(2): 207212.Google Scholar
76. Tzourio, C, Rocca, WA, Breteler, MM, et al. Smoking and Parkinson’s disease. An age-dependent risk effect? The EUROPARKINSON Study Group. Neurology 1997; 49(5): 12671272.Google Scholar
77. Tanner, CM, Goldman, SM, Aston, DA, et al. Smoking and Parkinson’s disease in twins. Neurology 2002; 58(4): 581588.Google Scholar
78. Grandinetti, A, Morens, DM, Reed, D, MacEachern, D. Prospective study of cigarette smoking and the risk of developing idiopathic Parkinson’s disease. Am J Epidemiol 1994; 139(12): 11291138.Google Scholar
79. Quik, M, Jeyarasasingam, G. Nicotinic receptors and Parkinson’s disease. Eur J Pharmacol 2000; 393(1–3): 223230.Google Scholar
80. Baron, JA. Cigarette smoking and Parkinson’s disease. Neurology 1986; 36(11): 14901496.CrossRefGoogle ScholarPubMed
81. Fowler, JS, Volkow, ND, Wang, GJ, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996; 379(6567): 733736.Google Scholar
82. Maggio, R, Riva, M, Vaglini, F, et al. Nicotine prevents experimental parkinsonism in rodents and induces striatal increase of neurotrophic factors. J Neurochem 1998; 71(6): 24392446.CrossRefGoogle ScholarPubMed
83. Ross, GW, Abbott, RD, Petrovitch, H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 2000; 283(20): 26742679.CrossRefGoogle ScholarPubMed
84. Chen, JF, Xu, K, Petzer, JP, et al. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 2001; 21(10): RC143.Google Scholar
85. Ross, GW, Petrovitch, H. Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson’s disease. Drugs Aging 2001; 18(11): 797806.Google Scholar
86. Tsui, JK, Calne, DB, Wang, Y, Schulzer, M, Marion, SA. Occupational risk factors in Parkinson’s disease. Can J Public Health 1999; 90(5): 334337.Google Scholar
87. Casals, J, Elizan, TS, Yahr, MD. Postencephalitic parkinsonism--a review. J Neural Transm 1998; 105(6–7): 645676.CrossRefGoogle ScholarPubMed
88. Taubenberger, JK, Reid, AH, Krafft, AE, Bijwaard, KE, Fanning, TG. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 1997; 275(5307): 17931796.Google Scholar
89. Calne, DB, Lees, AJ. Late progression of post-encephalitic Parkinson’s syndrome. Can J Neurol Sci 1988; 15(2): 135138.Google Scholar
90. Lin, SK, Lu, CS, Vingerhoets, FJG, et al. Isolated involvement of substantia nigra in acute transient parkinsonism: MRI and PET observation. Parkinsonism and Related Disorders 1995; 1:6773.Google Scholar
91. Takahashi, M, Yamada, T, Nakajima, S, et al. The substantia nigra is a major target for neurovirulent influenza A virus. J Exp Med 1995; 181(6): 21612169.Google Scholar
92. Nielsen, NM, Rostgaard, K, Hjalgrim, H, Aaby, P, Askgaard, D. Poliomyelitis and Parkinson disease. JAMA 2002; 287(13): 16501651.Google Scholar
93. Jha, N, Jurma, O, Lalli, G, et al. Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson’s disease. J Biol Chem 2000; 275(34): 2609626101.Google Scholar
94. Merad-Boudia, M, Nicole, A, Santiard-Baron, D, Saille, C, Ceballos-Picot, I. Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease. Biochem Pharmacol 1998; 56(5): 645655.Google Scholar
95. Han, J, Cheng, FC, Yang, Z, Dryhurst, G. Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson’s disease. J Neurochem 1999; 73(4): 16831695.Google Scholar
96. Soto-Otero, R, Mendez-Alvarez, E, Hermida-Ameijeiras, A, Munoz-Patino, AM, Labandeira-Garcia JL. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 2000; 74(4): 16051612.CrossRefGoogle Scholar
97. Olanow, CW, Jenner, P, Tatton, NA, Tatton, WG. Neurodegeneration and Parkinson’s disease. In: Jankovic, J, Tolosa, E, (Eds). Parkinson’s Disease and Movement Disorders. Baltimore, Maryland: Williams and Wilkins, 1998: 67103.Google Scholar
98. Alam, ZI, Jenner, A, Daniel, SE, et al. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 1997; 69(3): 11961203.CrossRefGoogle Scholar
99. Sanchez-Ramos, J, Overvik, E, Overvik, ABN. A marker of oxyradical-mediated DNA damage (8-hydroxy-2’deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain. Neurodegeneration 1994; 3:197204.Google Scholar
100. Sian, J, Dexter, DT, Lees, AJ, et al. Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 1994; 36(3): 356361.Google Scholar
101. Calne, DB. The free radical hypothesis in idiopathic parkinsonism: evidence against it. Ann Neurol 1992; 32(6): 799803.Google Scholar
102. Agid, Y, Chase, T, Marsden, D. Adverse reactions to levodopa: drug toxicity or progression of disease? Lancet 1998; 351(9106): 851852.Google Scholar
103. Murer, MG, Dziewczapolski, G, Menalled, LB, et al. Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Ann Neurol 1998; 43(5): 561575.Google Scholar
104. Rajput, AH. The protective role of levodopa in the human substantia nigra. Adv Neurol 2001; 86:327336.Google Scholar
105. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. N Engl J Med 1993; 328(3): 176183.Google Scholar
106. Schulzer, M, Mak, E, Calne, DB. The antiparkinson efficacy of deprenyl derives from transient improvement that is likely to be symptomatic. Ann Neurol 1992; 32(6): 795798.Google Scholar
107. Speiser, Z, Levy, R, Cohen, S. Effects of N-proparg y l-1- (R)aminoindan (rasagiline) in models of motor and cognition disorders. J Neural Transm Suppl 1998; 52:287300.Google Scholar
108. Youdim, MB, Gross, A, Finberg, JP. Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 2001; 132(2): 500506.CrossRefGoogle ScholarPubMed
109. Tatton, WG, Wadia, JS, Ju, WY, Chalmers-Redman, RM, Tatton, NA. (-)-Deprenyl reduces neuronal apoptosis and facilitates neuronal outgrowth by altering protein synthesis without inhibiting monoamine oxidase. J Neural Transm Suppl 1996; 48:4559.Google ScholarPubMed
110. Waldmeier, PC, Boulton, AA, Cools, AR, Kato, AC, Tatton, WG. Neurorescuing effects of the GAPDH ligand CGP 3466B. J Neural Transm Suppl 2000;60:197214.Google Scholar
111. Naoi, M, Maruyama, W, Takahashi, T, Akao, Y, Nakagawa, Y. Involvement of endogenous N-methyl(R)salsolinol in Parkinson’s disease: induction of apoptosis and protection by (-)deprenyl. J Neural Transm Suppl 2000;58:111121.Google Scholar
112. Leonard, JV, Schapira, AH. Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear gene defects. Lancet 2000; 355(9201): 389394.Google Scholar
113. Plasterer, TN, Smith, TF, Mohr, SC. Survey of human mitochondrial diseases using new genomic/proteomic tools. Genome Biol 2001; 2(6): RESEARCH0021.Google Scholar
114. Golden, TR, Melov, S. Mitochondrial DNA mutations, oxidative stress, and aging. Mech Ageing Dev 2001; 122(14): 15771589.Google Scholar
115. Melov, S. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann N Y Acad Sci 2000; 908:219225.Google Scholar
116. Ebadi, M, Muralikrishnan, D, Pellett, LJ, Murphy, T, Drees, K. Ubiquinone (coenzyme Q10) and complex I in mitochondrial oxidative disorder of Parkinson’s disease. Proc West Pharmacol Soc 2000; 43:5563.Google Scholar
117. Leret, ML, San Millan, JA, Fabre, E, Gredilla, R, Barja, G. Deprenyl protects from MPTP-induced Parkinson-like syndrome and glutathione oxidation in rat striatum. Toxicology 2002; 170:165171.Google Scholar
118. Gu, M, Cooper, JM, Taanman, JW, Schapira, AH. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 1998; 44(2): 177186.Google Scholar
119. Janetzky, B, Hauck, S, Youdim, MB, et al. Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett 1994; 169(1–2): 126128.Google Scholar
120. Schapira, AH, Cooper, JM, Dexter, D, et al. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; 1(8649): 1269.Google Scholar
121. Cardellach, F, Marti, MJ, Fernandez-Sola, J, et al. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson’s disease. Neurology 1993; 43(11): 22582262.Google Scholar
122. Yoshino, H, Nakagawa-Hattori, Y, Kondo, T, Mizuno, Y. Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1992; 4(1): 2734.Google Scholar
123. Mizuno, Y, Matuda, S, Yoshino, H, et al. An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann Neurol 1994; 35(2): 204210.Google Scholar
124. Gu, M, Gash, MT, Cooper, JM, et al. Mitochondrial respiratory chain function in multiple system atrophy. Mov Disord 1997; 12(3): 418422.Google Scholar
125. Agid, Y. [Aging, disease and nerve cell death]. Bull Acad Natl Med 1995; 179(6): 11931203.Google Scholar
126. Anglade, P, Vyas, S, Javoy-Agid, F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 1997; 12(1): 2531.Google Scholar
127. Tatton, NA, Maclean-Fraser, A, Tatton, WG, Perl, DP, Olanow, CW. A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 1998; 44(3 Suppl 1): S142-S148.Google Scholar
128. Banati, RB, Daniel, SE, Blunt, SB. Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 1998; 13(2): 221227.Google Scholar
129. Jellinger, KA. Cell death mechanisms in Parkinson’s disease. J Neural Transm 2000; 107(1): 129.Google Scholar
130. Kosel, S, Egensperger, R, von Eitzen, U, Mehraein, P, Graeber, MB. On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol (Berl) 1997; 93(2): 105108.Google Scholar
131. Hartmann, A, Hunot, S, Michel, PP, et al. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97(6): 28752880.Google Scholar
132. Jellinger, KA, Stadelmann, CH. The enigma of cell death in neurodegenerative disorders. J Neural Transm Suppl 2000; 60: 2136.Google Scholar
133. Viswanath, V, Wu, Y, Boonplueang, R, et al. Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methy l-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease. J Neurosci 2001; 21(24): 95199528.Google Scholar
134. Kahns, S, Lykkebo, S, Jakobsen, LD, Nielsen, MS, Jensen, PH. Caspase-mediated parkin cleavage in apoptotic cell death. J Biol Chem 2002; 277(18): 1530315308.Google Scholar
135. Mogi, M, Harada, M, Kondo, T, et al. bcl-2 protein is increased in the brain from parkinsonian patients. Neurosci Lett 1996; 215(2): 137139.Google Scholar
136. Mouatt-Prigent, A, Karlsson, JO, Agid, Y, Hirsch, EC. Increased M- calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience 1996; 73(4): 979987.Google Scholar
137. Hunot, S, Brugg, B, Ricard, D, et al. Nuclear translocation of NF- kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci USA 1997; 94(14): 75317536.Google Scholar
138. Beal, MF. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 2000; 23(7): 298304.Google Scholar
139. Uitti, RJ, Rajput, AH, Ahlskog, JE, et al. Amantadine treatment is an independent predictor of improved survival in Parkinson’s disease. Neurology 1996; 46(6): 15511556.Google Scholar
140. McGeer, PL, Itagaki, S, Boyes, BE, McGeer, EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988; 38(8): 12851291.Google Scholar
141. Langston, JW, Forno, LS, Tetrud, J, et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999; 46(4): 598605.Google Scholar
142. Cicchetti, F, Brownell, AL, Williams, K, et al. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PETimaging. Eur J Neurosci 2002; 15(6): 991998.Google Scholar
143. Defazio, G, Dal Toso, R, Benvegnu, D, et al. Parkinsonian serum carries complement-dependent toxicity for rat mesencephalic dopaminergic neurons in culture. Brain Res 1994; 633(1–2): 206212.Google Scholar
144. Aubin, N, Curet, O, Deffois, A, Carter, C. Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. J Neurochem 1998; 71(4): 16351642.Google Scholar