Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T00:08:44.507Z Has data issue: false hasContentIssue false

Effects of Antihypertensive Drugs on Blood Velocity: Implications for Prevention of Cerebral Vascular Disease

Published online by Cambridge University Press:  15 November 2018

Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The treatment of high blood pressure prevents death from congestive heart failure, hypertensive nephropathy, and encephalopathy, and strokes from cerebral arteriolar disease (lacunes, hemorrhage from micro-aneurysms). However, atherosclerosis, manifested as coronary artery disease, is just as frequent a cause of death in well-controlled hypertensives as in poorly-controlled patients. Increasing evidence suggests that increased blood velocity, by causing turbulence and high shear rates at the endothelial surface of arteries, may be important in the pathogenesis of atherosclerosis. Turbulence has been observed in cerebral berry aneurysms. In order to measure the effects of antihypertensive agents on blood velocity, a new method of analysing Doppler ultrasound velocity recordings has been developed. Studies in Rhesus monkeys show the following: In doses which reduce diastolic pressure by 13-28%, propranolol decreased mean blood velocity (MV) by 17%, clonidine decreased MV by 14%, while methyldopa increased MV 12%, and hydralazine increased MV by 52%. (p < .00001). It is hypothesized that enlargement of berry aneurysms, the progression of cerebral atherosclerosis, and embolism from carotid lesions might all be decreased by the selection of antihypertensive agents which decrease blood velocity.

Résumé

Résumé

Le traitement de l’hypertension protège de l’insuffisance cardiaque, de la néphropathie hypertensive, de l’encéphalopathie hypertensive et des accidents cérébro-vasculaires (lacunaires, hémorragie consécutive à des micro-anévrismes). Cependant, l’athérosclérose, manifestée par une maladie de l’artère coronaire, est une cause de décès aussi fréquente chez les patients hypertendus bien contrôlés que chez les patients moins bien contrôlés. De plus en plus d’évidence s’accumule montrant que la vélocité accrue du sang, en causant de la turbulence et un taux élevé de petites déchirures à la surface endothéliale des artères, peut être importante dans la pathogenèse de l’athérosclérose. La turbulence a été observée dans certains anévrismes. cérébraux. Afin de mesurer les effets des agents antihypertensifs sur la vélocité du sang, une nouvelle méthode d’analyse Doppler de la vitesse des ultrasons a été développée. Des études sur les singes Rhesus montrent les faits suivants: aux doses qui diminuent la pression diastouque de 13-28%, le Propanolol diminuait la vélocité moyenne du sang (MV) de 17%, la Clonidine diminuait MV de 14%), tandis que la Methyldopa diminuait MV de 12%, et l’Hydralazine augmentait MV de 52% (p < .00001). La progression de l’athérosclérose cérébrale, le mécanisme embolique des lésions de la carotide et l’agrandissement des micro-anévrismes pourraient tous être diminués par une sélection d’agents anti-hypertensifs qui diminuent la vélocité du sang.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1977

References

Beevers, G. D. Fairman, M. J., Hamilton, M. and Harpur, J. E. (1973). Antihypertensive treatment and the course of established cerebral vascular disease. Lancet, i, 14071409.CrossRefGoogle Scholar
Bergel, D. H., Nerem, R. M. and Schwartz, C. J. (1976). Fluid dynamic aspects of arterial disease. Atherosclerosis, 23. 253261 Google Scholar
Burton, A. C. (1972). Kinetic energy in the circulation: streamline flow and turbulence: measurement of arterial pressure. Chap. 11, in Physiology and biophysics of the circulation. Chicago Yearbook Medical Publishers.Google Scholar
Charcot, J. M. and Bouchard, C. (1868) Nouvelles recherches sur la pathogenie de l’hemorrhagie cerebrale. Archives de Physiologie, 1, 110, 643, and 725.Google Scholar
Cole, F. M. and Yates, P. O. (1967). The occurrence and significance of intracerebral microaneurysms. J. Path. Bact., 93, 393.Google Scholar
Dustan, H. P. Atherosclerosis complicating hypertension. Circulation, 50, 871879 Google Scholar
Ferguson, G. G. (1972). Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms. J Neurosurg., 37, 666677 CrossRefGoogle ScholarPubMed
Ferguson, G. G. (1970). Turbulence in human intracranial saccular aneurysms. J. Neurosurg., 33, 485497 Google Scholar
Friedman, M. H., Obrian, V. and Ehrlich, L. W. (1975). Calculations of Pulsatile Flow Through a branch. Circ. Res., 36, 277284.Google Scholar
Fry, D. L. (1968). Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res., 22, 165197 Google Scholar
Gosling, R. and King, D. H. (1974). Continuous wave ultrasound as an alternative and complement to x-rays in vascular examination. In Reneman, R. S. (Ed). Cardiovascular applications of ultrasound. New York, American Elsevier Publishing Co., pp. 266285.Google Scholar
Kannell, W. B., Gordon, T. and Schwartz, M. J. (1971). Systolic versus diastolic blood pressure and risk of coronary heart disease. Am. J Cardiol., 27, 335345.Google Scholar
Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K. and Bent, D. (1975). Statistical package for the social sciences. 2nd Edition. McGraw-Hill, New York.Google Scholar
Roach, M. R. (1963). An experimental study of the production and time course of poststenotic dilatation in the femoral and carotid arteries of adult dogs. Circ. Res., 13, 537551 CrossRefGoogle ScholarPubMed
Roach, M. R., Scott, S. and Ferguson, G. G. (1972). The hemodynamic importance of the gemometry of bifurcations in the circle of Willis. (Glass Model studies). Stroke, 3, 255267 Google Scholar
Ross, R. and Glomset, J. A. (1974). Studies of primate arterial smooth muscle cells in relation to atherosclerosis. In Arterial Mesenchyme and Arteriosclerosis. Eds. Wagner, W S. and Clarkson, T B.. Plenum Publ. Corp., New York, pp. 265279.Google Scholar
Ross, R. and Glomset, J. A. (1976). The pathogenesis of atherosclerosis. N Engl. J. Med., 295. 369377, 420-425.Google Scholar
Russell, R. W R. (1963). Observations on intracerebral aneurysms. Brain, 86. 425443.Google Scholar
Russell, R. W R. (1975). How does high blood pressure cause stroke? Lancet, ii, 12831285 Google Scholar
Schwartz, C J. and Mitchell, J. R. A. (1962). Observations on localization of arterial plaques. Circ. Res., 11, 6373.Google Scholar
Stehbens, W E. (1975). Ultrastructure of aneurysms. Arch. Neurol., 32, 798807 Google Scholar
Taguchi, J. and Freis, E. D. (1974). Partial reduction of blood pressure and prevention of complications in hypertension. New Engl. J. Med., 291, 329331 Google Scholar
Veteran’s Administration Cooperative Study Group On Antihypertensive Agents. (1975) Effects of treatment on Morbidity in Hypertension. J A.M.A., 213, 11431152.Google Scholar
Woodcock, J. Gosling, R., King, D. et al. (1972). Physical aspects of blood-velocity measurement by Doppler-shifted ultrasound. In Roberts, C. (Ed). Blood Flow measurement. London, Sector Publishing, pp. 1923.Google Scholar
Yellin, E. L. (1966). Laminar-turbulent transition process in pulsatile flow Circ. Res. 19: 791804 Google Scholar