Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T15:41:55.196Z Has data issue: false hasContentIssue false

Effect of Therapy on Motor Cortical Excitability in Parkinson’s Disease

Published online by Cambridge University Press:  02 December 2014

Aysun Soysal
Affiliation:
Bakirkoy State Hospital for Psychiatric and Neurological Diseases, I. Neurology Department, Bakirkoy/Istanbul, Turkey
Ismail Sobe
Affiliation:
Bakirkoy State Hospital for Psychiatric and Neurological Diseases, I. Neurology Department, Bakirkoy/Istanbul, Turkey
Turan Atay
Affiliation:
Bakirkoy State Hospital for Psychiatric and Neurological Diseases, I. Neurology Department, Bakirkoy/Istanbul, Turkey
Aysu Sen
Affiliation:
Bakirkoy State Hospital for Psychiatric and Neurological Diseases, I. Neurology Department, Bakirkoy/Istanbul, Turkey
Baki Arpaci
Affiliation:
Bakirkoy State Hospital for Psychiatric and Neurological Diseases, I. Neurology Department, Bakirkoy/Istanbul, Turkey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

To assess the impact of the disease stage and therapy on motor cortical excitability in Parkinson’s disease (PD).

Methods:

Twenty newly diagnosed and medication-free, early stage patients, 20 late stage patients under antiparkinsonian therapy and 20 normal healthy controls were included. Motor threshold (MT), amplitudes of motor evoked potential (MEP), motor evoked potential amplitude/compound muscle action potential amplitude (MEP/CMAP) ratio, central motor conduction time (CMCT) and cortical silent period (CSP) were measured by stimulation of the motor cortex using a 13.5 cm circular coil and recordings from abductor digiti minimi muscle. Following the first study protocol, early stage patients were given therapy and the same protocol was repeated three months later.

Results:

Motor threshold was lower; and the MEP/CMAP ratio was higher in early and late stage patients than normals. In early stage patients after proper therapy, the MTs became higher than before therapy, but still remained lower than normals. In late stage patients, the CMCTs were shorter than the early stage patients before therapy and normals, but there was no difference between the early stage patients and normals. In early stage patients after therapy, the CMCT became longer than before therapy and this difference was significant in both late stage patients and normals. Although more prominent in late stage patients, the CSP duration in both PD groups was found shorter than normals. In early stage patients, after therapy, the CSP durations became significantly longer compared with before therapy.

Conclusion:

These findings suggest that the motor cortical excitability increases in PD because of the impairment of the corticomotoneuronal inhibitory system.

résumé:

<span class='bold'>RÉSUMÉ:</span> <span class='bold'> <span class='italic'>Objectif:</span></span>

Nous avons évalué l’impact du stade de la maladie et du traitement sur l’excitabilité motrice corticale dans la maladie de Parkinson (MP).

<span class='bold'> <span class='italic'>Méthodes:</span></span>

Vingt patients dont le diagnostic était récent, qui étaient au début de la maladie et qui ne prenaient pas de médicament, ainsi que 20 patients à un stade avancé de la maladie et qui prenaient des médicaments antiparkinsoniens et 20 sujets témoins en bonne santé ont été inclus dans l’étude. Le seuil moteur (SM), les amplitudes des potentiels évoqués moteurs (PÉM), le ratio amplitude des potentiels évoqués moteurs/amplitude des potentiels d’action musculaire composés (PÉM/PAMC), le temps de conduction motrice centrale (TCMC) et la période de silence cortical (PSC) ont été mesurés par stimulation du cortex moteur au moyen d’une bobine circulaire de 13,5 cm et enregistrement au niveau du muscle abducteur du petit doigt. Après avoir effectué une première fois cette évaluation, les patients qui étaient au début de la maladie ont reçu un traitement et le même protocole a été répété trois mois plus tard.

<span class='bold'> <span class='italic'>Résultats:</span></span>

Le SM était plus bas et le ratio PÉM/PAMC était plus élevé chez les patients au début et en phase tardive de la maladie que chez les sujets normaux. Chez les patients en phase précoce de la maladie, le SM a augmenté après un traitement adéquat, mais il est demeuré en deça de celui des sujets normaux. En phase avancée de la maladie, les TCMC étaient plus courts que chez les patients en phase précoce avant traitement et que chez les sujets normaux, mais il n’y avait pas de différence entre les patients en phase précoce et les sujets normaux. Le TCMC s’est allongé chez les patients en phase précoce après traitement par rapport à ce qu’il était avant traitement et cette différence était significative tant chez les patients en phase avancée que chez les sujets normaux. Bien que ce soit plus marqué chez les patients en phase avancée, la durée de la PSC chez les deux groupes de patients parkinsoniens était plus courte que chez les sujets normaux. Chez les patients en phase précoce de la maladie, après traitement, la durée de la PSC a augmenté significativement par rapport à ce qu’elle était avant traitement.

<span class='bold'> <span class='italic'>Conclusion:</span></span>

Ces observations sont compatibles avec une augmentation de l’excitabilité motrice corticale dans la MP par suite d’une atteinte du système inhibiteur corticomotoneuronal.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2008

References

1. Priori, A, Berardelli, A, Inghilleri, M, Accornero, N, Manfredi, M. Motor cortical inhibition and dopaminergic system. Pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson’s disease and drug-induced parkinsonism. Brain. 1994; 117: 31723.Google Scholar
2. Young, MS, Triggs, WJ, Bowers, D, Greer, M, Friedman, WA. Stereotactic pallidotomy lengthens the transcranial magnetic cortical stimulation silent period in Parkinson’s disease. Neurology. 1997; 49: 127883.CrossRefGoogle ScholarPubMed
3. Olanow, CW, Jenner, P, Tatton, NA, Tatton, WG. Neurodegeneration and Parkinson’s disease. In: Jankovic, J, Tolosa, E, editors. Parkinson’s disease and movement disorders. Baltimore: Williams&Wilkins; 1993. p. 67103.Google Scholar
4. Riley, DE, Lang, AE. Movement disorders. In: Bradley, WG, Daroff, RB, Fenichel, GM, Marsden, CD, editors. Neurology in clinical practice. The neurological diseases. Boston: Butterworth Heinemann; 2000. p. 1889930.Google Scholar
5. Young, AB, Penney, JB. Biochemical and functional organization of the basal ganglia. In: Jankovic, J, Tolosa, E, editors. Parkinson’s disease and movement disorders. Baltimore: Williams&Wilkins; 1993. p. 113.Google Scholar
6. Ridding, MC, Inzelberg, R, Rothwell, JC. Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol. 1995; 37: 1818.CrossRefGoogle ScholarPubMed
7. Murray, NMF. Motor evoked potentials In: Aminoff, MJ, editor. Electrodiagnosis in clinical neurology. NewYork: Churchill Livingstone; 1992. p. 60526.Google Scholar
8. Rossini, PM, Barker, AT, Berardelli, A, Caramia, MD, Caruso, G, Cracco, RQ, et al. Non-invazive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroenceph Clin Neurophysiol. 1994; 91: 7992.Google Scholar
9. Cros, D, Chiappa, KH. Motor evoked potentials. In: Chiappa, KH, editor. Evoked potentials in clinical medicine. Philadelphia: Lippincott-Raven Publishers; 1997. p. 477507.Google Scholar
10. Rothwell, JC, Hallett, M, Berardelli, A, Eisen, A, Rossini, P, Paulus, W. Magnetic stimulation: motor evoked potentials. In: Deuschl, G, Eisen, A, editors. Recommendations for the practice of clinical neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology. Amsterdam: Elsevier Science B.V.; 1999. p. 97103.Google Scholar
11. Robinson, LR. Magnetic stimulation of the central and peripheral nervous systems. In: Dumitru, D, Amato, AA, editors. Electrodiagnostic medicine. Philadelphia: Hanley&Belfus, Inc.; 2002. p. 41527.Google Scholar
12. Pascual-Leone, A, Davey, N, Rothwell, J, Wassermann, EM, Puri, BK, editors. Handbook of transcranial magnetic stimulation. London: Arnold; 2002.Google Scholar
13. Weiner, WJ, Lang, AE. Rating scales for movement disorders. In: Weiner, WJ, Lang, AE, editors. Movement disorders. A comprehensive survey. Mount Kisko: Futura Publishing Company; 1989. p. 687725.Google Scholar
14. Masur, H. Scales and for specific syndromes and diseases. In: Masur, H, editor. Scales and scores in neurology. Quantification of neurological deficits in research and practice. Stutgart: Thieme; 2004. p. 142344.Google Scholar
15. Cantello, R, Gianelli, M, Bettucci, D, Civardi, C, De Angelis, MS, Mutani, R. Parkinson’s disease rigidity: magnetic motor evoked potentials in a small hand muscle. Neurology. 1991; 41: 144956.Google Scholar
16. Uozumi, T, Tsuji, S, Murai, Y. Motor potentials evoked by magnetic stimulation of the motor cortex in normal subjects and patients with motor disorders. Electroenceph Clin Neurophysiol. 1991; 81: 2516.Google Scholar
17. Valls-Sole, J, Pascual-Leone, A, Brasil-Neto, JP, Cammarota, A, McShane, L, Hallett, M. Abnormal facilitation of the response to the transcranial magnetic stimulation in patients with Parkinson’s disease. Neurology. 1994; 44: 73541.Google Scholar
18. Valzania, F, Strafella, AP, Quatrale, R, Santangelo, M, Tropeani, A, Lucchi, D, et al. Motor evoked responses to paired cortical magnetic stimulation in Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1997; 105: 3743.CrossRefGoogle ScholarPubMed
19. Lou, JS, Benice, T, Kearns, G, Sexton, G, Nutt, J. Levodopa normalizes exercise related cortico-motoneuron excitability abnormalities in Parkinson’s disease. Clin Neurophysiol 2003; 114: 9307.Google Scholar
20. Strafella, AP, Valzania, F, Nassetti, SA, Tropeani, A, Bisulli, A, Santangelo, M, et al. Effects of chronic levodopa and pergolide treatment on cortical excitability in patients with Parkinson’s disease: a transcranial magnetic stimulation study. Clin Neurophysiol. 2000; 111: 1198202.Google Scholar
21. Frasson, E, Bertolasi, L, Bertasi, V, Fusina, S, Bartolomei, L, Vicentini, S, et al. Paired transcranial magnetic stimulation for the early diagnosis of corticobasal degeneration. Clin Neurophysiol. 2003; 114: 2728.Google Scholar
22. Chen, R, Garg, RR, Lozano, AM, Lang, AE. Effects of internal globus pallidus stimulation on motor cortex excitability. Neurology. 2001; 56: 71623.Google Scholar
23. Dick, JPR, Cowan, JM A, Day, BL, Berardelli, A, Kachi, T, Rothwell, JC, et al. The corticomotoneurone connection is normal in Parkinson’s disease. Nature. 1984; 310: 4079.Google Scholar
24. De Rosa, A, Volpe, G, Marcantonio, L,Santoro, L, Brice, A,Filla, A, et al. Neurophysiological evidence of corticospinal tract abnormality in patients with Parkin mutations. J Neurol. 2006; 253: 2759.Google Scholar
25. Guekht, A, Selikhova, M, Serkin, G, Gusev, E. Implementation of the TMS in early stages of Parkinson’s diseases. Electromyogr Clin Neurophysiol. 2005; 45: 2917.Google Scholar
26. Siebner, HR, Mentschel, C, Auer, C, Lehner, C, Conrad, B. Repetitive transcranial magnetic stimulation causes a short-term increase in the duration of the cortical silent period in patients with Parkinson’s disease. Neurosci Lett. 2000; 284: 14750.Google Scholar
27. Berardelli, A, Rona, S, Inghilleri, M, Manfredi, M. Cortical inhibition in Parkinson’s disease. A study with paired magnetic stimulation. Brain. 1996; 119: 717.Google Scholar