Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-09T03:41:31.588Z Has data issue: false hasContentIssue false

Distribution of Dopamine in 35 Subregions of the Rat Caudate-Putamen: A High Performance Liquid Chromatography with Electrochemical Detection Analysis

Published online by Cambridge University Press:  18 September 2015

Thérèse Di Paolo*
Affiliation:
the Department of Molecular Endocrinology, Le Centre Hospitalier de l’Université Laval, Quebec GI V 4G2, Canada
Michel Daigle
Affiliation:
the Department of Molecular Endocrinology, Le Centre Hospitalier de l’Université Laval, Quebec GI V 4G2, Canada
André Dupont
Affiliation:
the Department of Molecular Endocrinology, Le Centre Hospitalier de l’Université Laval, Quebec GI V 4G2, Canada
*
Department of Molecular Endocrinology, Le Centre Hospitalier de l’Université Laval, Quebec, P.Q., Canada GI V4G2
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Topographical variations in the endogenous content of dopamine were studied in the rat caudate-putamen. For this purpose, a high performance liquid chromatography with electrochemical detection procedure for the determination of norepinephrine, epinephrine and dopamine in nervous tissue samples is described. Tissue preparation required only homogenization in acidic solution and centrifugation prior to application to the chromatograph. Detection limits in the low picogram range were found for the catecholamines separated. This assay was used in combination with a micropunch dissection technique. The performance of this analytical technique is illustrated by the detailed mapping of dopamine content in 35 subregions of the rat caudate-putamen. The distribution of dopamine varies along the major axis of the nucleus.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1982

References

Chalmers, J.P. (1975). Brain amines and models of experimental hypertension. Circulat. Res. 36, 469480.Google Scholar
Cools, A.R. (1973). Chemical and electrical stimulation of the caudate nucleus in freely-moving cats: the role of dopamine. Brain Res., 58, 437451.CrossRefGoogle ScholarPubMed
Cools, A.R., Struyker Boudier, H.A.J. and Van Rossum, J.M. (1976). Dopamine receptors: selective agonists and antagonists of functionally distinct types within the feline brain. Eur. J. Pharmacol., 37, 283293.Google Scholar
Cools, A.R. and Van Rossum, J.M. (1976). Excitation-mediating and inhibition-mediating dopamine receptors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia (Berl.), 45, 243254.CrossRefGoogle ScholarPubMed
Coyle, J.T. and Henry, D. (1973). Catecholamines in fetal and newborn rat brain. J. Neurochem., 21, 6167.CrossRefGoogle ScholarPubMed
Crombeen, J.P., Kraak, J.C. and Poppe, H. (1978). Reversed-phase systems for the analysis of catecholamines and related compounds by high-performance liquid chromatography. J. Chromat., 167, 219230.CrossRefGoogle ScholarPubMed
Crowley, W.R., O’Donohue, T.L. and Jacobowitz, D.M. (1978). Changes in catecholamine content in discrete brain nuclei during the estrous cycle of the rat. Brain Res., 147, 315326.CrossRefGoogle ScholarPubMed
Crowley, W.R., O’Donohue, T.L., Wachslicht, H. and Jacobowitz, D.M. (1978). Effects of estrogen and progesterone on plasma gonadotropins and on catecholamine levels and turnover in discrete brain regions of ovariectomized rats. Brain Res., 154, 345357.CrossRefGoogle ScholarPubMed
Delashaw, J.B. Jr., Foutz, A.S., Guilleminault, C. and Dement, W.C. (1979). Cholinergic mechanisms and cataplexy in dogs. Exp. Neurol. 66, 745757.CrossRefGoogle ScholarPubMed
Dupont, A., Di Paolo, T., Gagné, B. and Barden, N. (1981). Effects of chronic estrogen treatment on dopamine levels and turnover in discrete brain nuclei of ovariectomized rats. Neurosci. Lett. 22, 6974.CrossRefGoogle Scholar
Fahn, S., Libsch, L.R. and Cutler, R.W. (1971). Monoamines in the human neostriatum: topographic distribution in normals and in Parkinson’s disease and their role in akinesia, rigidity chorea and tremor. J. Neurol. Sci. 14, 427455.CrossRefGoogle ScholarPubMed
Felice, L.J., Felice, J.D. and Kissinger, P.T. (1978). Determination of catecholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. J. Neurochem., 31, 14611465.CrossRefGoogle ScholarPubMed
Freed, C.R. and Asmus, P.A. (1979). Brain tissue and plasma assay of L-Dopa and – methyldopa metabolites by high performance liquid chromatography with electrochemical detection. J. Neurochem., 32, 163168.CrossRefGoogle ScholarPubMed
Fuxe, K., Hökfelt, T., Olson, L. and Ungerstedt, U. (1977) Central monoaminergic pathways with emphasis on their relation to the so called ‘extrapyramidal motor system’. Pharmac. Ther. B, 3, 169210.Google Scholar
Guyenet, P.G., Agid, Y., Javoy, F., Beaujovan, J.C., Rossier, J. and Glowinski, J. (1975) Effects of dopamine receptor agonists and antagonists on the activity of the neostriatal cholinergic system. Brain Res., 84, 227244.CrossRefGoogle Scholar
Hökfelt, T. (1968). In vitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z. Zellforsch, 91, 174.CrossRefGoogle ScholarPubMed
Hökfelt, T., Johansson, O., Fuxe, K., Goldstein, M. and Park, D. (1977). Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. II. Tyrosine hydroxylase in the telencephalon, Med. Biol., 55, 2140.Google ScholarPubMed
Hökfelt, T. and Ungerstedt, U. (1969). Electron and fluorescence microscopical studies on the nucleus caudatus putamen of the rat after unilateral lesions of ascending nigro-neostriatal dopamine neurons. Acta Physiol. Scand. 76, 415426.CrossRefGoogle ScholarPubMed
Hökfelt, T. and Ungerstedt, U. (1973). Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: An electron and fluorescence microscopic study with special reference to intracerebral injection on the nigrostriatal dopamine system. Brain Res. 60, 269297.CrossRefGoogle Scholar
Jacobowitz, D.M. and Palkovits, M. (1974). Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. J. Comp. Neur. 157, 1328.CrossRefGoogle ScholarPubMed
Kramer, C.Y. (1956). Extension of multiple-range tests to group means with unequal numbers of replications. Biometrics, 12, 307310.CrossRefGoogle Scholar
Konig, J.R.F. and Klippel, R.A. (1967). The rat brain: a stereotaxic atlas of the forebrain and lower parts of the brain stem, Krieger Publishers, Huntingdon, New York.Google Scholar
Koslow, S.H., Racagni, G. and Costa, E. (1974). Mass-fragmentographic measurement of norepinephrine, dopamine, serotonin and acetylcholine in seven discrete brain nuclei of the rat tel-diencephalon. Neuropharmacol., 13, 11231130.CrossRefGoogle ScholarPubMed
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265275.CrossRefGoogle ScholarPubMed
Maloin, F. and Bédard, P.J.Head turning induced by unilateral intracaudate thyrotro-pin-releasing hormone (TRH) injection in the cat, Eur. J. Pharmacol, (in press).Google Scholar
Mattsson, B., Gottfries, C.G., Roos, B.-E. and Winbald, B. (1974). Huntingtons chorea: pathology and brain amines, Acta Psychiat. Scand., Suppl. 255, 269277.Google Scholar
Mcgeer, E.G., Mcgeer, P.L. and Wada, J.A. (1971). Distribution of tyrosine hydroxylase in human and animal brain. J. Neurochem., 18, 16471658.CrossRefGoogle ScholarPubMed
Mefford, I.N., Gilberg, M. and Barchas, J.D. (1980). Simultaneous determination of catecholamines and unconjugated 3, 4-dihydroxyphenylacetic acid in brain tissue by ion-pairing reverse-phase high-performance liquid chromatography with electrochemical detection. Anal. Biochem., 104, 469472.CrossRefGoogle ScholarPubMed
Mefford, I., Oke, A., Keller, R., Adams, R.N. and Jonsson, G. (1978). Epinephrine distribution in human brain. Neurosci. Lett. 5, 141145.CrossRefGoogle Scholar
Moyer, T.P. and Jiang, N.S. (1978). Optimized isocratic conditions for analysis of catecholamines by high performance reversed-phase pairedion chromatography with amperometric detection. J. Chromatogr., 153, 365372.CrossRefGoogle Scholar
Palkovits, M. (1973). Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res., 59, 449450.CrossRefGoogle ScholarPubMed
Porsolt, R.D., Anton, G., Blavet, N. and Jalfre, M. (1978). Behavioral dispair in rats, a new model sensitive to antidepressant treatments. Eur. J. Pharmacol. 47, 379391.Google Scholar
Saraswat, L.D., Holdiness, M.R., Justice, J.B., Salamone, J.D. and Neill, D.B. (1981). Determination of dopamine, homovanillic acid and 3, 4-dihydroxyphenylacetic acid in rat brain striatum by high performance liquid chromatography with electrochemical detection. J. Chromat., 222, 353362.CrossRefGoogle ScholarPubMed
Sasa, S. and Blank, C.L. (1979). Simultaneous determination of norepinephrine, dopamine and serotonin in brain tissue by high pressure liquid chromatography with electrochemical detection. Anal. Chim. Acta, 104, 2945.CrossRefGoogle Scholar
Stadler, H., Lloyd, K.G., Gadea-Ciria, M. and Bartholini, G. (1973). Enhanced striatal ACh release by chlorpromazine and its reversal by apomorphine. Brain Res. 55, 476480.CrossRefGoogle Scholar
Tassin, J.P., Cheramy, A., Blanc, G., Thierry, A.M. and Glowinski, J. (1976). Topographical distribution of dopaminergic innervation and of dopaminergic receptors in the rat striatum. I. Micro-estimation of [3H] dopamine uptake and dopamine content in microdiscs. Brain Res., 107, 291301.CrossRefGoogle Scholar
Ungerstedt, U. (1968). 6-hydroxydopa-mine-induced degeneration of central monoamine neurons. Europ. J. Pharmacol., 5, 107110.Google Scholar
Usdin, E., Kopin, I.J. and Barchas, J. (1979). Catecholamines: basic and clinical frontiers. Pergamon Press, New York.Google Scholar
Van Der Gugten, J., Palkovits, M., Wijnen, H.L.J.M. and Versteeg, D.H.G. (1976). Regional distribution of adrenaline in rat brain. Brain Res., 107, 171175.CrossRefGoogle ScholarPubMed
Wagner, J., Palfreyman, M. and Zraika, M. (1979). Determination of DOPA, dopamine, DOPAC, epinephrine, norepinephrine, a – monofluoromethyldopa and a-difluoromethyldopa in various tissues of mice and rats using reversed-phase ionpair liquid chromatography with electrochemical detection. J. Chromatogr., 164, 4154.CrossRefGoogle ScholarPubMed
Westerlund, D., Carlqvist, J. and Theodorsen, A. (1979). Analysis of penicillins in biological material by reversed phase liquid chromatography and post-column derivatization. Acta Pharm. Suecica, 16, 187214.Google ScholarPubMed