Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T23:07:27.268Z Has data issue: false hasContentIssue false

Corpus Callosum and Cingulum Tractography in Parkinson's Disease

Published online by Cambridge University Press:  02 December 2014

Katie Wiltshire
Affiliation:
Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
Luis Concha
Affiliation:
Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
Myrlene Gee
Affiliation:
Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
Thomas Bouchard
Affiliation:
Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
Christian Beaulieu
Affiliation:
Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
Richard Camicioli*
Affiliation:
Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
*
E223 Glenrose Rehabilitation Hospital, 10120111th Avenue, Edmonton, Alberta, T5G 0B7, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

In Parkinson's disease (PD) cell loss in the substantia nigra is known to result in motor symptoms; however widespread pathological changes occur and may be associated with non-motor symptoms such as cognitive impairment. Diffusion tensor imaging is a quantitative imaging method sensitive to the micro-structure of white matter tracts.

Objective:

To measure fractional anisotropy (FA) and mean diffusivity (MD) values in the corpus callosum and cingulum pathways, defined by diffusion tensor tractography, in patients with PD, PD with dementia (PDD) and controls and to determine if these measures correlate with Mini-Mental Status Examination (MMSE) scores in parkinsonian patients.

Methods:

Patients with PD (17 Males [M], 12 Females [F]), mild PDD (5 M, 1F) and controls (8 M, 7F) underwent cognitive testing and MRI scans. The corpus callosum was divided into four regions and the cingulum into two regions bilaterally to define tracts using the program DTIstudio (Johns Hopkins University) using the fiber assignment by continuous tracking algorithm. Volumetric MRI scans were used to measure white and gray matter volumes.

Results:

Groups did not differ in age or education. There were no overall FA or MD differences between groups in either the corpus callosum or cingulum pathways. In PD subjects the MMSE score correlated with MD within the corpus callosum. These findings were independent of age, sex and total white matter volume.

Conclusions:

The data suggest that the corpus callosum or its cortical connections are associated with cognitive impairment in PD patients.

Résumé:

RÉSUMÉ:Contexte:

Dans la maladie de Parkinson, il est bien connu que laperte cellulaire dans le locus niger cause des symptömes moteurs; cependant, il se produit des changements anatomopathologiques étendus qui peuvent ètre associés à des symptömes qui ne sont pas moteurs tels une atteinte cognitive. L’imagerie en tenseur de diffusion est une méthode d’imagerie quantitative qui est sensible à la microstructure des faisceaux de la substance blanche.

Objectif:

Le but de l’étude était de mesurer l’anisotropie fractionnelle (AF) et la diffusivité moyenne (DM) dans les voies du corps calleux et du cingulum, définies par la tractographie en tenseur de diffusion, chez des patients atteints de la MP, de la MP accompagnée de démence (MPD) et chez des témoins, et d’évaluer si ces mesures son corrélées avec les scores au Mini-Mental Status Examinassions (MMSE) chez des patients parkinsoniens.

Méthodes:

Des patients atteints de la MP (17 hommes et 12 femmes), de la MPD (5 hommes et 1 femme et des témoins (8 hommes et 7 femmes) ont subi une évaluation cognitive et des scans par IRM. Le corps calleux était divisé en quatre régions et le cingulum en deux régions bilatéralement pour définir les voies au moyen du programme DTIstudio (Johns Hopkins University) utilisant l’algorithme de "tracking" de fibres continu pour l’organisation des faisceaux. Des scans IRM volumétriques ont été utilisés pour mesurer le volume de la substance blanche et de la substance grise.

Résultats:

L’àge et le niveau de scolarité des différents groupes étaient semblables. Il n y avait pas de différences de FA ou de MD entre les groupes dans les voies du corps calleux ou du cingulum. Chez les sujets atteints de la MP, les scores au MMSE étaient corrélés à la MD dans le corps calleux. Ces observations étaient indépendantes de l’äge, du sexe et du volume total de la substance blanche.

Conclusions:

Selon ces données, le corps calleux ou ses connections corticales sont associés à

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Braak, H, Muller, CM, Rub, U, Ackermann, H, Bratzke, H, de Vos, RA, et al. Pathology associated with sporadic Parkinson’s disease-where does it end? J Neural Transm Suppl. 2006;(70):8997.Google ScholarPubMed
2. Burton, EJ, McKeith, IG, Burn, DJ, Williams, ED, O’Brien, JT. Cerebral atrophy in parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with lewy bodies and controls. Brain. 2004;127(Pt 4):791800.CrossRefGoogle ScholarPubMed
3. Basser, PJ, Mattiello, J, LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):25967.CrossRefGoogle ScholarPubMed
4. Beaulieu, C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15(7-8): 43555.CrossRefGoogle ScholarPubMed
5. Mori, S, Zhang, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51(5): 52739.CrossRefGoogle ScholarPubMed
6. Yoshikawa, K, Nakata, Y, Yamada, K, Nakagawa, M. Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J Neurol Neurosurg Psychiatry. 2004;75 (3):4814.CrossRefGoogle ScholarPubMed
7. Chan, LL, Rumpel, H, Yap, K, Lee, E, Loo, HV, Ho, GL, et al. Case control study of diffusion tensor imaging in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(12):13836.CrossRefGoogle ScholarPubMed
8. Matsui, H, Nishinaka, K, Oda, M, Niikawa, H, Kubori, T, Udaka, F. Dementia in Parkinson’s disease: diffusion tensor imaging. Acta Neurol Scand. 2007;116(3):17781.CrossRefGoogle ScholarPubMed
9. Camicioli, R, Fisher, N. Progress in clinical neurosciences: Parkinson’s disease with dementia and dementia with Lewy bodies. Can J Neurol Sci. 2004;31(1):721.CrossRefGoogle ScholarPubMed
10. Bozzali, M, Falini, A, Cercignani, M, Baglio, F, Farina, E, Alberoni, M, et al. Brain tissue damage in dementia with Lewy bodies: an in vivo diffusion tensor MRI study. Brain. 2005;128(Pt 7): 1595604.CrossRefGoogle Scholar
11. Wiltshire, K, Foster, S, Kaye, JA, Small, BJ, Camicioli, R. Corpus callosum in neurodegenerative diseases: findings in Parkinson’s disease. Dement Geriatr Cogn Disord. 2005;20(6):34551.CrossRefGoogle ScholarPubMed
12. Hughes, AJ, Daniel, SE, Kilford, L, Lees, AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinicopathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):1814.CrossRefGoogle ScholarPubMed
13. American Psychiatric Association. American psychiatric association. diagnostic and statistical manual of mental disorders: DSM-IV. 4th ed. Washington DC: 1994.Google Scholar
14. Folstein, MF, Folstein, SE, McHugh, PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 197;12(3):18998.CrossRefGoogle Scholar
15. Fahn, S, Elton, RL, Members of the UPDRS Development Committee. The Unified Parkinson’s Disease Rating Scale. In Fahn, S, Marsden, CD, Calne, DB, Goldstein, M, eds: Recent Developments in Parkinson’s Disease, Vol. 2. Florham Park, NJ: Macmillan Healthcare Information, 1987. pp. 153163, 293-304.Google Scholar
16. Camicioli, R, Gee, M, Bouchard, TP, Fisher, NJ, Hanstock, CC, Emery, DJ, et al. Voxel-based morphometry reveals extra-nigral atrophy patterns associated with dopamine refractory cognitive and motor impairment in parkinsonism. Parkinsonism Relat Disord. 2009;15(3):18795.CrossRefGoogle ScholarPubMed
17. Acharya, HJ, Bouchard, TP, Emery, DJ, Camicioli, RM. Axial signs and magnetic resonance imaging correlates in Parkinson’s disease. Can J Neurol Sci. 2007;34(1):5661.CrossRefGoogle ScholarPubMed
18. Mori, S, Crain, BJ, Chacko, VP, van Zijl, PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45(2):2659.3.0.CO;2-3>CrossRefGoogle Scholar
19. Shrout, PE, Fleiss, JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:4208.CrossRefGoogle ScholarPubMed
20. Matsui, H, Nishinaka, K, Oda, M, Niikawa, H, Komatsu, K, Kubori, T, et al. Wisconsin Card Sorting Test in Parkinson’s disease: diffusion tensor imaging. Acta Neurol Scand. 2007;116(2): 10812.CrossRefGoogle ScholarPubMed
21. Matsui, H, Nishinaka, K, Oda, M, Niikawa, H, Komatsu, K, Kubori, T, et al. Depression in Parkinson’s disease. Diffusion tensor imaging study. J Neurol. 2007;254(9):11703.CrossRefGoogle ScholarPubMed
22. Gattellaro, G, Minati, L, Grisoli, M, Mariani, C, Carella, F, Osio, M, et al. White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. AJNR Am J Neuroradiol. 2009; 30(6):12226.CrossRefGoogle ScholarPubMed
23. Tessa, C, Giannelli, M, Della Nave, R, Lucetti, C, Berti, C, Ginestroni, A, et al. A whole-brain analysis in de novo Parkinson disease. AJNR Am J Neuroradiol. 2008;29(4):67480.CrossRefGoogle ScholarPubMed
24. Karagulle Kendi, AT, Lehericy, S, Luciana, M, Ugurbil, K, Tuite, P. Altered diffusion in the frontal lobe in Parkinson disease. AJNR Am J Neuroradiol. 2008;29(3):5015.CrossRefGoogle ScholarPubMed
25. Scherfler, C, Schocke, MF, Seppi, K, Esterhammer, R, Brenneis, C, Jaschke, W, et al. Voxel-wise analysis of diffusion weighted imaging reveals disruption of the olfactory tract in Parkinson’s disease. Brain. 2006;129(Pt 2):53842.CrossRefGoogle ScholarPubMed
26. Zhang, K, Yu, C, Zhang, Y, Wu, X, Zhu, C, Chan, P, et al. Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson’s disease. Eur J Radiol. 2009 Aug 17. [Epub ahead of print].Google ScholarPubMed
27. Vaillancourt, DE, Spraker, MB, Prodoehl, J, Abraham, I, Corcos, DM, Zhou, XJ, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology. 2009; 72(16):137884.CrossRefGoogle ScholarPubMed
28. Menke, RA, Scholz, J, Miller, KL, Deoni, S, Jbabdi, S, Matthews, PM, et al. MRI characteristics of the substantia nigra in Parkinson’s disease: a combined quantitative T1 and DTI study. Neuroimage. 2009;47(2):43541.CrossRefGoogle ScholarPubMed
29. Aravamuthan, BR, Stein, JF, Aziz, TZ. The anatomy and localization of the pedunculopontine nucleus determined using probabilistic diffusion tractography. Br J Neurosurg. 2008;22 Suppl 1:S2532.CrossRefGoogle ScholarPubMed
30. Malykhin, N, Concha, L, Seres, P, Beaulieu, C, Coupland, NJ. Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts. Psychiatry Res. 2008; 164(2):13242.CrossRefGoogle ScholarPubMed
31. Yoshiura, T, Mihara, F, Ogomori, K, Tanka, A, Kaneko, K, Masuda, K. Diffusion tensor in posterior cingulate gyrus: correlation with cognitive decline in Alzheimer’s disease. NeuroReport. 2002;13 (17):2299302.CrossRefGoogle ScholarPubMed
32. Nakata, Y, Sato, N, Nemoto, K, Abe, O, Shikakura, S, Arima, K, et al. Diffusion abnormality in the posterior cingulum and hippocampal volume: correlation with disease progression in Alzheimer’s disease. Magn Reson Imag. 2009;27(3):34754.CrossRefGoogle ScholarPubMed