Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T17:51:45.024Z Has data issue: false hasContentIssue false

Cerebrospinal Fluid IL-21 Levels in Neuromyelitis Optica and Multiple Sclerosis

Published online by Cambridge University Press:  02 December 2014

Aimin Wu
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
Xiaonan Zhong
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
Honghao Wang
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
Wen Xu
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
Chen Cheng
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
Yongqiang Dai
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
Jian Bao
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
Wei Qiu
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
Zhengqi Lu
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
Xueqiang Hu*
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
*
Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Neuromyelitis optica (NMO) and multiple sclerosis (MS) are inflammatory demyelinating diseases of human central nervous system (CNS) with complex pathogenesis. IL-21/IL-21R regulates activation, proliferation and survival of both T cells and B cells, which are involved in the pathogenesis of NMO and MS. High levels of serum IL-21 were observed in NMO patients. However, concentration of cerebrospinal fluid (CSF) IL-21 in MS and NMO patients still remain unknown.

Object:

To detect the CSF concentration of IL-21 in NMO and MS patients and to evaluate its relationship with disease activity, particularly concerned about its impact on humoral immunity.

Methods:

CSF IL-21 was detected by an enzyme-linked immunosorbent assay (ELISA) in NMO patients (n=21), MS patients (n=20) and controls (n=16).

Results:

CSF concentration of the IL-21 was noticeably elevated in NMO (p=0.012) and borderline significantly increased in MS (p=0.115). In addition, this occurrence was associated with humoral immune activity as shown by a correlation between IL-21 and complement in NMO cohort (p=0.023) and high IL-21 levels in autoantibody-positive subgroup (p=0.027).

Conclusions:

The concentration of CSF IL-21 was noticeably elevated and might have a positive correlation with humoral immune activity in NMO.

Résumé

RÉSUMÉ Contexte:

La neuromyélite optique (NMO) et la sclérose en plaques (SP) sont des maladies démyélinisantes inflammatoires du système nerveux central (SNC) humain dont la pathogenèse est complexe. IL-21/IL-21R régule l'activation, la prolifération et la survie des cellules T et des cellules B qui sont impliquées dans la pathogenèse de la NMO et de la SP. Des taux sériques élevés d'IL-21 ont été observés chez des patients atteints de NMO. Cependant, la concentration d'IL-21 dans le liquide céphalo-rachidien (LCR) de patients atteints de SP ou de NMO demeure inconnue.

Objectif:

Le but de l'étude était de déterminer la concentration d'IL-21 dans le LCR de patients atteints de NMO ou de SP et d'évaluer sa relation à l'activité de la maladie, particulièrement en ce qui a trait à son impact sur l'activité immunitaire humorale.

Méthode:

L'IL-21 dans le LCR a été identifié par ELISA chez 21 patients atteints de NMO, 20 patients atteints de SP et 16 sujets témoins.

Résultats:

La concentration d'IL-21 dans le LCR était sensiblement élevée chez les patients atteints de NMO (p = 0,012) et limite chez les patients atteints de SP (p = 0,115). De plus, ceci était associé à une activité immunitaire humorale comme le démontre la corrélation entre IL-21 et le complément dans la cohorte de patients atteints de NMO (p = 0,023) et un niveau élevé d'IL-21 dans le sous-groupe de patients possédant des autoanticorps (p = 0,027).

Conclusions:

La concentration d'IL-21 dans le LCR était sensiblement élevée chez les patients atteints de NMO et pourrait avoir une corrélation positive avec l'activité immunitaire humorale.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2012

References

1. Matà, S, Lolli, F. Neuromyelitis optica: an update. J Neurol Sci. 2011;303(1–2):1321.CrossRefGoogle ScholarPubMed
2. Fletcher, JM, Lalor, SJ, Sweeney, CM, et al. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162(1):111.CrossRefGoogle ScholarPubMed
3. Li, Y, Wang, H, Long, Y, et al. Increased memory Th17cells in patients with neuromyelitis optica and multiple sclerosis. J Neuroimmunol. 2011;234(1–2):15560.CrossRefGoogle Scholar
4. Link, H, Tibbling, G. Principles of albumin and IgG analyses in neurological disorders. III. Evaluation of IgG synthesis within the central nervous system in multiple sclerosis. Scand J Clin Lab Invest. 1977;37(5):397401.CrossRefGoogle ScholarPubMed
5. Archelos, JJ, Storch, MK, Hartung, HP. The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol. 2000;47(6): 694706.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
6. Lennon, V.A, Wingerchuk, DM, Kryzer, TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364(9451):210612.CrossRefGoogle ScholarPubMed
7. Watanabe, S, Nakashima, I, Misu, T, et al. Therapeutic efficacy of plasma exchange in NMO-IgG-positive patients with neuromyelitis optica. Mult Scler. 2007;13(1):12832.CrossRefGoogle ScholarPubMed
8. Bakker, J, Metz, L. Devic’s neuromyelitis optica treated with intravenous gamma globulin (IVIG). Can J Neurol Sci. 2004;31 (2):2657.CrossRefGoogle ScholarPubMed
9. Cree, BA, Lamb, S, Morgan, K, et al. An open label study of the effects of rituximab in neuromyelitis optica. Neurology. 2005;64 (7):12702.CrossRefGoogle ScholarPubMed
10. Bedi, GS, Brown, AD, Delgado, SR, et al. Impact of rituximab on relapse rate and disability in neuromyelitis optica. Mult Scler. 2011;17(10):122530.CrossRefGoogle ScholarPubMed
11. Pellkofer, HL, Krumbholz, M, Berthele, A, et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology. 2011;76(15):13105.CrossRefGoogle ScholarPubMed
12. Ozaki, K, Kikly, K, Michalovich, D, et al. Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc Natl Acad Sci USA. 2000;97(21):1143944.CrossRefGoogle Scholar
13. Parrish-Novak, J, Dillon, SR, Nelson, A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 2000;408(6808):5763.CrossRefGoogle ScholarPubMed
14. Spolski, R, Leonard, WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol. 2008:26:5779.CrossRefGoogle ScholarPubMed
15. Monteleone, G, Caruso, R, Fina, D, et al. Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut. 2006;55(12):177480.CrossRefGoogle ScholarPubMed
16. Monteleone, G, Pallone, F, Macdonald, TT. Interleukin-21 as a new therapeutic target for immune-mediated diseases. Trends Pharmacol Sci. 2009;30(8):4417.CrossRefGoogle ScholarPubMed
17. Deenick, EK, Tangye, SG. Autoimmunity: IL-21: a new player in Th17-cell differentiation. Immunol Cell Biol. 2007;85(7):5035.CrossRefGoogle ScholarPubMed
18. Monteleone, G, Pallone, F, Macdonald, TT. Interleukin-21 (IL-21)-mediated pathways in T cell-mediated disease. Cytokine Growth Factor Rev. 2009;20(2):18591.CrossRefGoogle ScholarPubMed
19. Konforte, D, Simard, N, Paige, CJ. IL-21: an executor of B cell fate. J Immunol 2009;182(4):17817.CrossRefGoogle ScholarPubMed
20. Ettinger, R, Kuchen, S, Lipsky, PE. Interleukin 21 as a target of intervention in autoimmune disease. Ann Rheum Dis. 2008;67 Suppl 3:iii836.CrossRefGoogle ScholarPubMed
21. Ettinger, R, Kuchen, S, Lipsky, PE. The role of IL-21 inregulating B-cell functionin health and disease. Immunol Rev. 2008;223: 6086.CrossRefGoogle Scholar
22. Wang, HH, Dai, YQ, Qiu, W, et al. Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J Clin Neurosci. 2011;18(10):13137.CrossRefGoogle ScholarPubMed
23. Wingerchuk, DM, Lennon, VA, Pittock, SJ, et al. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006;66(10): 14859.CrossRefGoogle ScholarPubMed
24. Polman, CH, Reingold, SC, Banwell, B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292302.CrossRefGoogle Scholar
25. Vollmer, TL, Liu, R, Price, M, et al. Differential effects of IL-21 during initiation and progression of autoimmunity against neuroantigen. J Immunol. 2005;174(5):2696701.CrossRefGoogle ScholarPubMed
26. Chen, M, Chen, G, Nie, H, et al. Regulatory effects of IFN-beta on production of osteopontin and IL-17 by CD4+ T Cells in MS. Eur J Immunol. 2009;39(9):252536.CrossRefGoogle ScholarPubMed
27. Zhang, X, Tao, Y, Troiani, L, et al. Simvastatin inhibits IFN regulatory factor 4 expression and Th17 cell differentiation in CD4+ T cells derived from patients with multiple sclerosis. J Immunol. 2011;187(6):34317.CrossRefGoogle ScholarPubMed
28. Xie, L, Li, XK, Funeshima-Fuji, N, et al. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol. 2009;9(5):57581.CrossRefGoogle ScholarPubMed
29. Andersson, A, Isaksson, M, Wefer, J, et al. Impaired autoimmune T helper 17 cell responses following DNA vaccination against rat experimental autoimmune encephalomyelitis. PLoS One. 2008;3(11):e3682.CrossRefGoogle ScholarPubMed
30. Kwok, SK, Cho, ML, Park, MK, et al. Interleukin-21 promotes osteoclasto genesis in rheumatoid arthritis in humans and mice. Arthritis Rheum. 2012;64(3):74051 CrossRefGoogle Scholar
31. Kang, KY, Kim, HO, Kwok, SK, et al. Impact of interleukin-21 in the pathogenesis of primary Sjogren’s syndrome: increased serum levels of interleukin-21 and its expression in the labial salivary glands. Arthritis Res Ther. 2011;13(5):R179.CrossRefGoogle ScholarPubMed
32. Tüzün, E, Kürtüncü, M, Türkoğlu, R, et al. Enhanced complement consumption in neuromyelitis optica and Behçet’s disease patients. J Neuroimmunol. 2011;233(–1–2):2115.CrossRefGoogle ScholarPubMed
33. Doi, H, Matsushita, T, Isobe, N, et al. Hypercomplementemia at relapse in patients with anti-aquaporin-4 antibody. Mult Scler. 2009;15(3):30410.CrossRefGoogle ScholarPubMed
34. Bradl, M, Misu, T, Takahashi, T, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol. 2009;66(5):63043.CrossRefGoogle ScholarPubMed
35. Jarius, S, Paul, F, Franciotta, D, et al. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat Clin Pract Neurol. 2008;4(4): 20214.CrossRefGoogle ScholarPubMed
36. Fedetz, M, Ndagire, D, Fernandez, O, et al. Multiple sclerosis association study with the TENR-IL2-IL21 region in a Spanish population. Tissue Antigens. 2009;74(3):2447.CrossRefGoogle Scholar
37. Lindén, M, Nohra, R, Sundqvist, E, et al. No evidence of IL21 association with multiple sclerosis in a Swedish population. Tissue Antigens. 2011;78(4):2714.CrossRefGoogle Scholar
38. Tzartos, JS, Craner, MJ, Friese, MA, et al. IL-21 and IL-21 receptor expression in lymphocytes and neurons in multiple sclerosis brain. Am J Pathol. 2011;178(2):794802.CrossRefGoogle ScholarPubMed