Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T08:05:29.203Z Has data issue: false hasContentIssue false

Cellular Adhesion Molecules in Neurology

Published online by Cambridge University Press:  18 September 2015

Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of cellular adhesion molecules offers crucial understanding of cellular interactions. Their name implies an underestimation of their function, as intercellular glue. In fact, they play vital roles in tissue development and intra- and intercellular signaling. In neurology, cellular adhesion molecules are already providing welcome new insight into neurodevelopmental anomalies, autoimmune demyelination, and invasive tumours. Cellular adhesion molecule manipulation has led to several therapeutic options which are the subject of ongoing clinical investigation.

Type
Review Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1997

References

REFERENCES

1.Springer, TA. Adhesion receptors of the immune system. Nature 1990; 346: 425434.CrossRefGoogle ScholarPubMed
2.Gumbiner, BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345357.CrossRefGoogle ScholarPubMed
3.Bevilaqua, MP, Nelson, RM. Selectins. J Clin Invest 1993; 91: 379357.CrossRefGoogle Scholar
4.Springer, TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multiple step paradigm. Cell 1994; 76: 301314.CrossRefGoogle Scholar
5.Ariza, A, Lopez, D, Mate, JL. Role of CD44 in the invasiveness of glioblastoma multiforme and the noninvasiveness of meningioma: an immunohistochemical study. Human Pathol 1995; 26: 11441147.CrossRefGoogle Scholar
6.Kinter, C. Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain. Cell 1992; 69: 225236.CrossRefGoogle Scholar
7.Hirano, S, Kimoto, N, Shimoyama, Yet al. Identification of a neural alpha-catenin as a key regulator of cadherin function and multicellular organisation. Cell 1992; 70: 293301.CrossRefGoogle Scholar
8.Rosales, C, O’Brien, V, Kornberg, L, Juliano, R. Signal transduction by cell adhesion receptors. Biochim Biophysica Acta 1995; 1242: 7798.Google ScholarPubMed
9.Dodd, J, Jessell, TM. Axon guidance and the patterning of neuronal projections in vertebrates. Science 1988; 242: 692699.CrossRefGoogle ScholarPubMed
10.Schmidt, R. Cell-adhesion molecules in memory function. Behav Brain Res 1995; 66: 6572.CrossRefGoogle Scholar
11.Schneider, R, Schweiger, M. A novel mosaic of cell adhesion motifs in the extracellular domains of the neurogenic trk and trkB tyrosine kinase receptors. Oncogene 1991; 6: 18071811.Google ScholarPubMed
12.Doherty, P, Ashton, SV, Moore, SE, Walsh, FS. Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell 1991; 67: 2133.CrossRefGoogle ScholarPubMed
13.He, YGrinnell, F. Stress relaxation of fibroblasts activates a cyclic AMP signaling pathway. J Cell Biol 1994; 126: 457464.CrossRefGoogle ScholarPubMed
14.Davenport, RW, Don, P, Rehder, V, et al. A sensory role for neuronal growth cone filopodia. Nature 1993; 361: 721723.CrossRefGoogle ScholarPubMed
15.Bedlack, RS, Wei, MD, Loew, LM. Localised membrane depolarisations and localised calcium influx during electric field-guided neurite growth. Neuron 1992; 9: 393403.CrossRefGoogle ScholarPubMed
16.Doherty, P, Walsh, FS. Signal transduction events underlying neurite outgrowth stimulated by cellular adhesion nolecules. Curr Opin Neurobiol 1994; 4: 4955.CrossRefGoogle Scholar
17.Bronner-Fraser, M, Wolf, JJ, Murray, BA. Effects of antibodies against N-cadherin and NCAM on the cranial neural crest and neural tube. Dev Biol 1992; 153: 291301.CrossRefGoogle ScholarPubMed
18.Landmesser, L, Dahm, L, Tang, JC, et al. Polysialic acid as a regulator of intramuscular nerve branching during embryonic development. Neuron 1990; 4: 655667.CrossRefGoogle ScholarPubMed
19.Tang, JC, Landmesser, L, Rutishauser, U. Polysialic acid influences specific pathfinding by avian motoneurons. Neuron 1992; 8: 10311044.CrossRefGoogle ScholarPubMed
20.Figarella-Branger, DFDurbec, PLRougon, GN. Differential spectrum of expression of neural cell adhesion molecule isoforms on human neuroectodermal tumours. Cancer Res 1990; 50: 63646370.Google Scholar
21.Doherty, P, Moolenaar, CECK, Ashton, SV, et al. The VASE exon downregulates the neurite growth promoting activity of NCAM 140. Nature 1992; 356: 791793.CrossRefGoogle ScholarPubMed
22.Muller, U, Kypta, R. Molecular genetics of neuronal adhesion. Curr Opin Neurobiol 1995; 5: 3641.CrossRefGoogle ScholarPubMed
23.Jouet, M, Rosenthal, A, MacFarlane, J, et al. Missense mutation confirms the LI defect in HSAS. Nature Genet 1993; 4: 331.CrossRefGoogle Scholar
24.Jouet, M, Rosenthal, A, Armstrong, G, et al. X-linked spastic paraplegia, MASA syndrome, and X-linked hydrocephalus result from mutations in the LI gene. Nature Genet 1994; 7: 402407.CrossRefGoogle Scholar
25.Vits, L, VanCamp, G, Coucke, P, et al. MASA Syndrome is due to mutations in LI CAM. Nature Genet 1994; 7: 408413.CrossRefGoogle Scholar
26.Filbin, MT, Tennekoon, GI. Myelin Po-protein, more than just a structural protein? Bioessays 1992; 14: 541547.CrossRefGoogle Scholar
27.Schachner, M. Neural recognition molecules in disease and regeneration. Curr Opin Neurobiol 1994; 4: 726734.CrossRefGoogle ScholarPubMed
28.Snipes, GJ, Suter, U, Shooter, EM. The genetics of myelin. Curr Opin Neurobiol 1993; 3: 694702.CrossRefGoogle ScholarPubMed
29.Bergoffen, J, Scherer, SS, Wang, S, et al. Connexin mutations in X-linked CMT disease. Science 1993; 262: 20392042.CrossRefGoogle Scholar
30.Montag, D, Giese, KP, Bartsch, U, et al. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 1994; 13: 120.CrossRefGoogle ScholarPubMed
31.Grumet, M. Cell adhesion molecules and their subgroups in the nervous system. Curr Opin Neurobiol 1991; 1: 370376.CrossRefGoogle ScholarPubMed
32.Couldwell, WT, deTribolet, N, Antel, JP, et al. Adhesion molecules and malignant gliomas: implications for tumorigenesis. J Neurosurg 1992; 76: 782791.CrossRefGoogle ScholarPubMed
33.Franco, B, Guioli, S, Pragliola, A, et al. A gene deleted in Kallman’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 1991; 353: 529536.CrossRefGoogle ScholarPubMed
34.Hayashi, YK, Engvall, E, Arikawa-Hirasawa, E, et al. Abnormal localization of laminin subunits in muscular dystrophies. J Neurol Sci 1993; 119: 5364.CrossRefGoogle ScholarPubMed
35.The interferon beta multiple sclerosis study group. Interferon beta-lb in the treatment of multiple sclerosis: final outcome of the randomised controlled trial. Neurol 1995; 45: 12771285.CrossRefGoogle Scholar
36.Svenningsson, A, Hansson, GK, Andersen, O, et al. Adhesion molecule expression on cerebrospinal fluid T lymphocytes: evidence for common recruitment mechanisms in multiple sclerosis, aseptic meningitis, and normal controls. Ann Neurol 1993; 34: 155161.CrossRefGoogle ScholarPubMed
37.Baron, JL, Madri, JA, Ruddle, NH, et al. Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 1993; 177: 5768.CrossRefGoogle ScholarPubMed
38.Yednok, TA, Cannon, LC, Fritz, F, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha4 betal integrin. Nature 1992; 356: 6366.CrossRefGoogle Scholar
39.Steinman, L. Autoimmunity and the nervous system. In: Goldstein, RA ed. Neuroimmune Disorders. Immunol Allergy Clin North Am 1988; 8: 213221.Google Scholar
40.Raine, CS. Multiple sclerosis: immune system molecule expression in the central nervous system. J Neuropathol Exp Neurol 1994; 53: 328337.CrossRefGoogle ScholarPubMed
41.Archelos, JJ, Jung, S, Maurer, M, et al. Inhibition of experimental autoimmune encephalomyelitis by an antibody to the intercellular adhesion molecule ICAM-1. Ann Neurol 1993; 34: 145154.CrossRefGoogle Scholar
42.Damle, NK, Aruffo, A. Vascular cell adhesion molecule 1 induces T cell antigen receptior-dependent activation of CD4+ T lymphocytes. Proc Natl Acad Sci USA 1991; 88: 64036407.CrossRefGoogle ScholarPubMed
43.Dang, LH, Michalek, MT, Takei, F, et al. Role of ICAM-1 in antigen presentation demonstrated by ICAM-1 defective mutants. J Immunol 1990; 144: 40824091.CrossRefGoogle ScholarPubMed
44.Dougherty, GJ, Murdock, S, Hogg, N. The function of human intercellular adhesion molecule-1 in the generation of an immune response. Eur J Immunol 1988; 18: 3539.CrossRefGoogle ScholarPubMed
45.Brosnan, CF, Cannella, B, Battistini, L, et al. Cytokine localization in MS lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology 1995; 45(S6): S16–S22.CrossRefGoogle ScholarPubMed
46.Cannella, B, Cross, AH, Raine, CS. Anti-adhesion molecule therapy in experimental autoimmune encephalomyelitis. J Neuroimmunol 1993; 46: 4356.CrossRefGoogle ScholarPubMed
47.Welsh, CT, Roose, JW, Hill, KE, et al. Augmentation of adoptively transferred experimental allergic encephalomyelitis by administration of a monoclonal antibody specific for LFA-1 alpha. J Neuroimmunol 1993; 43: 161168.CrossRefGoogle ScholarPubMed
48.Hartung, HP, Reiners, K, Archelos, JJ, et al. Circulating adhesion molecules and tumour necrosis factor receptor in MS: correlation with MRI. Ann Neurol 1995; 38: 186193.CrossRefGoogle Scholar
49.Reickmann, P, Weichselbraun, I, Albrecht, M, et al. Serial analysis of circulating adhesion molecules and TNF receptor in serum from patients with multiple sclerosis: cICAM-1 is an indicator for relapse. Neurology 1994; 44: 15231526.Google Scholar
50.Lindsey, JW, Hodgkinson, S, Mehta, R, et al. Phase 1 clinical trial of chimeric monoclonal anti-CD4 antibody in MS. Neurology 1994; 44: 413419.CrossRefGoogle Scholar
51.Moreau, T, Thorpe, J, Miller, D, et al. Preliminary evidence from MRI for reduction in disease activity after lymphocyte depletion in MS. Lancet 1993; 344: 298301.CrossRefGoogle Scholar
52.Weinshenker, BG, Bass, B, Karlik, S, et al. An open trial of OKT3 in patients with MS. Neurology 1991; 41: 10471052.CrossRefGoogle Scholar
53.Reingold, SC. Clinical trials of new agents in MS, planned, in progress, recently completed. National MS Society. New York. April 1995.Google Scholar
54.Sosroseno, W, Herminajeng, E. The immunoregulatory roles of TGF-beta. Br J Biomed Sci 1995; 52: 142148.Google Scholar
55.Zhang, RL, Chopp, M, Tang, WX, et al. Synthetic peptide derived from the Bordetella pertussis bacterium reduces infarct volume after transient middle cerebral artery occlusion in the rat. Neurology 1996; 46: 14371441.CrossRefGoogle ScholarPubMed
56.Ziang, N, Moyle, M, Soule, HR, et al. Neutrophil inhibitory factor is neuroprotective after focal ischemia in rats. Ann Neurol 1995; 38: 935942.Google Scholar
57.Schleiffenbaum, B, Spertini, O, Tedder, TF. Soluble L-selectin is present in human plasma at high levels and retains functional activity. J Cell Biol 1992; 119: 229238.CrossRefGoogle ScholarPubMed
58.Picker, LJ, de los Toyos, J, Telen, MJ, et al. Monoclonal antibodies against the CD44 and Pgp-1 antigens in man recognize the Hermes class of lymphosyte homing receptors. J Immunol 1989; 142: 20462051.CrossRefGoogle ScholarPubMed
59.Radotra, B, McCormick, D, Crockard, A. CD44 plays a role in adhesive interactions between glioma cells and extracellular matrix components. Neuropathol Appl Neurobiol 1994; 20: 399405.CrossRefGoogle Scholar
60.Li, H, Liu, J, Hofmann, M, et al. Differential CD44 expression patterns in primary brain tumours and brain metastases. Br J Cancer 1995; 72: 160163.CrossRefGoogle ScholarPubMed
61.Gianconi, FG, Ruoslahti, E. Elevated levels of the alpha5beta, fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 1990; 60: 849859.Google Scholar
62.Gehlsen, KR, Davis, GE, Sriramarao, P. Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis 1992; 10: 111120.CrossRefGoogle ScholarPubMed
63.Rice, GE, Bevilacqua, MP. An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science 1989; 246: 13031306.CrossRefGoogle ScholarPubMed
64.Johnson, JP, Stade, BG, Holzmann, B, et al. De novo expression of ICAM-1 in melanoma correlates with increased risk of metastasis. Proc Natl Acad Sci USA 1989; 86: 641644.CrossRefGoogle ScholarPubMed
65.Roossien, FF, de Rijk, D, Bikker, A, et al. Involvement of LFA-1 in lymphoma invasion and metastasis demonstrated with LFA-1-deficient mutants. J Cell Biol 1989; 108: 19791985.CrossRefGoogle ScholarPubMed
66.Friedlander, DR, Zagzag, D, Shiff, B, et al. Migration of brain tumour cells on extracellular matrix proteins in vitro correlates with tumor type and grade and involves alphav and beta1 integrins. Cancer Res 1996; 56: 19391947.Google ScholarPubMed
67.Zagzag, D, Friedlander, DR, Miller, DC, et al. Tenascin expression in astrocytomas correlates with angiogenesis. Cancer Res 1995; 55: 907914.Google ScholarPubMed
68.Higuchi, M, Ohnishi, T, Arita, N, et al. Expression of tenascin in human gliomas: its relation to histological malignancy, tumor dedifferentiation and angiogenesis. Acta Neuropathol 1993; 85: 481487.CrossRefGoogle ScholarPubMed
69.Edvardsen, K, Pedersen, PH, Bjerkvig, R, et al. Transfection of glioma cells with the neural-cell adhesion molecule NCAM: effect on glioma-cell invasion and growth in vivo. Int J Cancer 1994; 58: 116122.CrossRefGoogle ScholarPubMed
70.Kuppner, MC, van Meir, E, Hamou, MF, et al. Cytokine regulation of intercellular adhesion molecule-1 expression on human glioblastoma cells. Clin Exp Immunol 1990; 81: 142148.CrossRefGoogle ScholarPubMed
71.Miescher, S, Whiteside, TL, de Tribolet, N, et al. In situ characterization, clonogenic potential, and antitumor cytolytic activity of T lymphocytes infiltrating human brain cancers. J Neurosurg 1988; 68: 438448.CrossRefGoogle ScholarPubMed
72.Dhib-jalbut, S, Kufta, CV, Flerlage, M, et al. Adult human glial cells can present target antigens to HLA-restricted cytotoxic T-cells. J Neuroimmunol 1990; 29: 203211.CrossRefGoogle ScholarPubMed
73.Altmann, DM, Hogg, N, Trowsdale, J, et al. Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells. Nature 1989; 338: 512514.CrossRefGoogle ScholarPubMed
74.Yamanaka, R, Tanaka, R, Saito, T. Immunohistochemical analysis of tumour-infiltrating lymphocytes and adhesion molecules (ICAM-1, NCAM) in human gliomas. Neurologia Medico-Chiurgica 1994; 34: 583587.CrossRefGoogle ScholarPubMed
75.Rosenman, SJ, Shrikant, P, Dubb, L, et al. Cytokine induced expression of VCAM-1 by astrocytes and astrocytoma cell lines. J Immunol 1995; 154: 18881899.CrossRefGoogle ScholarPubMed
76.Barba, D, Saris, SC, Holder, C, et al. Intra tumoral LAK cell and IL-2 therapy of human gliomas. J Neurosurg 1989; 70: 175182.CrossRefGoogle Scholar
77.Couldwell, WT, Dore-Duffy, P, Apuzzo, MLJ, et al. Malignant glioma modulation of immune function: relative contribution of different soluble factors. J Neuroimmunol 1991; 33: 8996.CrossRefGoogle ScholarPubMed
78.Kuppner, MC, Hamou, MF, Swamura, Y, et al. Inhibition of lymphocyte function by glioblastoma-derived TGF beta-2. J Neurosurg 1989; 71: 211217.CrossRefGoogle Scholar
79.Chen, TC, Hinton, DR, Apuzzo, ML, et al. Differential effects of TNF-alpha on proliferation, cell surface antigen expression, and cytokine interactions in malignant gliomas. Neurosurgery 1993; 32: 8594.CrossRefGoogle ScholarPubMed