Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T01:26:48.882Z Has data issue: false hasContentIssue false

Canadian Association of Neurosciences Review: The Role of Dopamine Receptor Function in Neurodegenerative Diseases

Published online by Cambridge University Press:  02 December 2014

Manon Lebel
Affiliation:
Neuroscience Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Pierre Robinson
Affiliation:
Neuroscience Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Michel Cyr
Affiliation:
Neuroscience Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dopamine (DA) receptors, which are heavily expressed in the caudate/putamen of the brain, represent the molecular target of several drugs used in the treatment of various neurological disorders, such as Parkinson's disease. Although most of the drugs are very effective in alleviating the symptoms associated with these conditions, their long-term utilization could lead to the development of severe side-effects. In addition to uncovering novel mediators of physiological DA receptor functions, recent research advances are suggesting a role of these receptors in toxic effects on neurons. For instance, accumulating evidence indicates that DA receptors, particularly D1 receptors, are central in the neuronal toxicity induced by elevated synaptic levels of DA. In this review, we will discuss recent findings on DA receptors as regulators of long term neuronal dysfunction and neurodegenerative processes.

Résumé:

RÉSUMÉ:

Les récepteurs dopaminergiques, exprimés notamment dans les noyaux caudé et putamen du cerveau, sont la cible pharmacologique de plusieurs médicaments employés dans le traitement de maladies neurologiques telle que la maladie de Parkinson. Bien que ces médicaments soient efficaces pour renverser les symptômes cliniques de la maladie, ils sont associés au développement d'effets secondaires incommodants majeurs lorsque utilisés à long terme. L'avancement de la recherche sur la fonction des récepteurs dopaminergiques a mis en lumière plusieurs nouvelles voies de signalisation, dont certaines sont reconnues pour initier la neurodégénérescence. Ainsi, des études récentes ont démontré l'implication des récepteurs dopaminergiques D1 dans la toxicité induite par des niveaux synaptiques élevés de dopamine. Cet article a pour but d'exposer le rôle potentiel d'un dérèglement de la signalisation des récepteurs dopaminergiques dans l'apparition de dysfonctions neuronales, voire même la neurodégénérescence.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Missale, C, Nash, SR, Robinson, SW, Jaber, M, Caron, MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78: 189225.Google Scholar
2. Neve, KA, Seamans, JK, Trantham-Davidson, H. Dopamine receptor signaling. J Recept Signal Transduct Res. 2004;24:165205.Google Scholar
3. Carboni, E, Imperato, A, Perezzani, L, Di Chiara, G. Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience. 1989;28: 65361.Google Scholar
4. Hurd, YL, Ungerstedt, U. In vivo neurochemical profile of dopamine uptake inhibitors and releasers in rat caudate-putamen. Eur J Pharmacol. 1989;166:25160.Google Scholar
5. Giros, B, Jaber, M, Jones, SR, Wightman, RM, Caron, MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996;379: 60612.Google Scholar
6. Amara, SG, Sonders, MS, Zahniser, NR, Povlock, SL, Daniels, GM. Molecular physiology and regulation of catecholamine transporters. Adv Pharmacol. 1998;42:1648.Google Scholar
7. Jones, SR, Gainetdinov, RR, Jaber, M, Giros, B, Wightman, RM, Caron, MG. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA. 1998;95:402934.Google Scholar
8. Sotnikova, TD, Beaulieu, JM, Gainetdinov, RR, Caron, MG. Molecular biology, pharmacology and functional role of the plasma membrane dopamine transporter. CNS Neurol Disord Drug Targets. 2006;5:4556.Google Scholar
9. Erickson, JD, Eiden, LE, Hoffman, BJ. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci USA. 1992;89:109937.Google Scholar
10. Liu, Y, Peter, D, Roghani, A, Schuldiner, S, Prive, GG, Eisenberg, D, et al. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell. 1992;70:53951.CrossRefGoogle ScholarPubMed
11. Hornykiewicz, O. Parkinson’s disease: from brain homogenate to treatment. Fed Proc. 1973;32:18390.Google ScholarPubMed
12. Robertson, MM, Stern, JS. The Gilles de la Tourette syndrome. Crit Rev Neurobiol. 1997;11:119.Google Scholar
13. Abi-Dargham, A, Rodenhiser, J, Printz, D, Zea-Ponce, Y, Gil, R, Kegeles, LS, et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA. 2000;97:81049.Google Scholar
14. Jakel, RJ, Maragos, WF. Neuronal cell death in Huntington’s disease: a potential role for dopamine. Trends Neurosci. 2000;23:23945.CrossRefGoogle ScholarPubMed
15. Castellanos, FX, Tannock, R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci. 2002;3:61728.Google Scholar
16. Swanson, JM, Volkow, ND. Pharmacokinetic and pharmacodynamic properties of stimulants: implications for the design of new treatments for ADHD. Behav Brain Res. 2002;130:738.Google Scholar
17. Tamminga, CA, Carlsson, A. Partial dopamine agonists and dopaminergic stabilizers, in the treatment of psychosis. Curr Drug Targets CNS Neurol Disord. 2002;1:1417.Google Scholar
18. Hurley, MJ, Jenner, P. What has been learnt from study of dopamine receptors in Parkinson’s disease? Pharmacol Ther. 2006;Feb2; [Epub ahead of print].Google Scholar
19. Chase, TN, Mouradian, MM, Engber, TM. Motor response complications and the function of striatal efferent systems. Neurology. 1993;43:S237.Google Scholar
20. Bedard, PJ, Blanchet, PJ, Levesque, D, Soghomonian, JJ, Grondin, R, Morissette, M, et al. Pathophysiology of L-dopa-induced dyskinesias. Mov Disord. 1999;[14 Suppl] 1:S48.Google Scholar
21. Blanchet, PJ. Antipsychotic drug-induced movement disorders. Can J Neurol Sci. 2003;[30 Suppl 1]:S1017.CrossRefGoogle ScholarPubMed
22. Jenner, P. Dopamine agonists, receptor selectivity and dyskinesia induction in Parkinson’s disease. Curr Opin Neurol. 2003;[16 Suppl 1]:S37.Google Scholar
23. Jaber, M, Robinson, SW, Missale, C, Caron, MG. Dopamine receptors and brain function. Neuropharmacology. 1996;35:150319.Google Scholar
24. De Keyser, J, Claeys, A, De Backer, JP, Ebinger, G, Roels, F, Vauquelin, G. Autoradiographic localization of D1 and D2 dopamine receptors in the human brain. Neurosci Lett. 1988;91:1427.CrossRefGoogle ScholarPubMed
25. Palacios, JM, Camps, M, Cortes, R, Probst, A. Mapping dopamine receptors in the human brain. J Neural Transm Suppl. 1988;27:S22735.Google Scholar
26. Levey, AI, Hersch, SM, Rye, DB, Sunahara, RK, Niznik, HB, Kitt, CA, et al. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci USA. 1993;90:88615.Google Scholar
27. Gerfen, CR, Keefe, KA, Gauda, EB. D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. J Neurosci. 1995;15:816776.Google Scholar
28. Le Moine, C, Bloch, B. D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol. 1995;355:41826.Google Scholar
29. Aubert, I, Ghorayeb, I, Normand, E, Bloch, B. Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol. 2000;418:2232.Google Scholar
30. Jackson, DM, Westlind-Danielsson, A. Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther. 1994;64:291370.Google Scholar
31. Vallone, D, Picetti, R, Borrelli, E. Structure and function of dopamine receptors. Neurosci Biobehav Rev. 2000;24:12532.Google Scholar
32. Khan, ZU, Gutierrez, A, Martin, R, Penafiel, A, Rivera, A, de la Calle, A. Dopamine D5 receptors of rat and human brain. Neuroscience. 2000;100:68999.Google Scholar
33. Bergson, C, Mrzljak, L, Smiley, JF, Pappy, M, Levenson, R, Goldman-Rakic, PS. Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci. 1995;15:782136.Google Scholar
34. Ciliax, BJ, Nash, N, Heilman, C, Sunahara, R, Hartney, A, Tiberi, M, et al. Dopamine D(5) receptor immunolocalization in rat and monkey brain. Synapse. 2000;37:12545.Google Scholar
35. Grandy, DK, Zhang, YA, Bouvier, C, Zhou, QY, Johnson, RA, Allen, L, et al. Multiple human D5 dopamine receptor genes: a functional receptor and two pseudogenes. Proc Natl Acad Sci USA. 1991;88:91759.Google Scholar
36. Sunahara, RK, Guan, HC, O’Dowd, BF, Seeman, P, Laurier, LG, Ng, G, et al. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature. 1991;350:6149.Google Scholar
37. Sealfon, SC, Olanow, CW. Dopamine receptors: from structure to behavior. Trends Neurosci. 2000;23:S3440.Google Scholar
38. Quik, M, Iversen, LL. Regional study of 3H-spiperone binding and the dopamine-sensitive adenylate cyclase in rat brain. Eur J Pharmacol. 1979;56:32330.Google Scholar
39. Camus, A, Javoy-Agid, F, Dubois, A, Scatton, B. Autoradiographic localization and quantification of dopamine D2 receptors in normal human brain with [3H]N-n-propylnorapomorphine. Brain Res. 1986;375:13549.Google Scholar
40. Wang, H, Pickel, VM. Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol. 2002;442:392404.Google Scholar
41. Gerfen, CR, Engber, TM, Mahan, LC, Susel, Z, Chase, TN, Monsma, FJ Jr., et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:142932.CrossRefGoogle ScholarPubMed
42. Meador-Woodruff, JH, Mansour, A, Healy, DJ, Kuehn, R, Zhou, QY, Bunzow, JR, et al. Comparison of the distributions of D1 and D2 dopamine receptor mRNAs in rat brain. Neuropsychopharmacology. 1991;5:23142.Google Scholar
43. Weiner, DM, Levey, AI, Sunahara, RK, Niznik, HB, O’Dowd, BF, Seeman, P, et al. D1 and D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci USA. 1991;88:185963.Google Scholar
44. Surmeier, DJ, Song, WJ, Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci. 1996;16:657991.Google Scholar
45. Aizman, O, Brismar, H, Uhlen, P, Zettergren, E, Levey, AI, Forssberg, H, et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci. 2000;3:22630.Google Scholar
46. Levesque, D, Diaz, J, Pilon, C, Martres, MP, Giros, B, Souil, E, et al. Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci USA. 1992;89:81559.Google Scholar
47. Landwehrmeyer, B, Mengod, G, Palacios, JM. Dopamine D3 receptor mRNA and binding sites in human brain. Brain Res Mol Brain Res. 1993;18:18792.Google Scholar
48. Murray, AM, Ryoo, HL, Gurevich, E, Joyce, JN. Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci USA. 1994;91:112715.CrossRefGoogle ScholarPubMed
49. Le Moine, C, Bloch, B. Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience. 1996;73:13143.Google Scholar
50. Bordet, R, Ridray, S, Carboni, S, Diaz, J, Sokoloff, P, Schwartz, JC. Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci USA. 1997;94:33637.Google Scholar
51. Ridray, S, Griffon, N, Mignon, V, Souil, E, Carboni, S, Diaz, J, et al. Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: opposite and synergistic functional interactions. Eur J Neurosci. 1998; 10:167686.Google Scholar
52. Schwartz, JC, Diaz, J, Bordet, R, Griffon, N, Perachon, S, Pilon, C, et al. Functional implications of multiple dopamine receptor subtypes: the D1/D3 receptor coexistence. Brain Res Brain Res Rev. 1998;26:23642.Google Scholar
53. Van Tol, HH, Bunzow, JR, Guan, HC, Sunahara, RK, Seeman, P, Niznik, HB, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature. 1991;350:6104.Google Scholar
54. Murray, AM, Hyde, TM, Knable, MB, Herman, MM, Bigelow, LB, Carter, JM, et al. Distribution of putative D4 dopamine receptors in postmortem striatum from patients with schizophrenia. J Neurosci. 1995;15:218691.CrossRefGoogle ScholarPubMed
55. Primus, RJ, Thurkauf, A, Xu, J, Yevich, E, McInerney, S, Shaw, K, et al. II. Localization and characterization of dopamine D4 binding sites in rat and human brain by use of the novel, D4 receptor-selective ligand [3H]NGD 94-1. J Pharmacol Exp Ther. 1997;282:10207.Google Scholar
56. Sidhu, A, Niznik, HB. Coupling of dopamine receptor subtypes to multiple and diverse G proteins. Int J Dev Neurosci. 2000; 18:66977.Google Scholar
57. Cole, RL, Konradi, C, Douglass, J, Hyman, SE. Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron. 1995;14:81323.Google Scholar
58. Nishi, A, Snyder, GL, Greengard, P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci. 1997;17:814755.Google Scholar
59. Tang, TS, Bezprozvanny, I. Dopamine receptor-mediated Ca(2+) signaling in striatal medium spiny neurons. J Biol Chem. 2004;279:4208294.Google Scholar
60. Dudman, JT, Eaton, ME, Rajadhyaksha, A, Macias, W, Taher, M, Barczak, A, et al. Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem. 2003;87:92234.Google Scholar
61. Hernandez-Lopez, S, Tkatch, T, Perez-Garci, E, Galarraga, E, Bargas, J, Hamm, H, et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci. 2000;20:898795.Google Scholar
62. Bibb, JA, Snyder, GL, Nishi, A, Yan, Z, Meijer, L, Fienberg, AA, et al. Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature. 1999;402:66971.Google Scholar
63. Nishi, A, Bibb, JA, Snyder, GL, Higashi, H, Nairn, AC, Greengard, P. Amplification of dopaminergic signaling by a positive feedback loop. Proc Natl Acad Sci USA. 2000;97:128405.Google Scholar
64. Vossler, MR, Yao, H, York, RD, Pan, MG, Rim, CS, Stork, PJ. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell. 1997;89:7382.Google Scholar
65. de Rooij, J, Zwartkruis, FJ, Verheijen, MH, Cool, RH, Nijman, SM, Wittinghofer, A, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396:4747.CrossRefGoogle ScholarPubMed
66. Zhen, X, Uryu, K, Cai, G, Johnson, GP, Friedman, E. Age-associated impairment in brain MAPK signal pathways and the effect of caloric restriction in Fischer 344 rats. J Gerontol A Biol Sci Med Sci. 1999;54:B53948.Google Scholar
67. Gerfen, CR, Miyachi, S, Paletzki, R, Brown, P. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci. 2002;22:504254.Google Scholar
68. Schmitt, JM, Stork, PJ. PKA phosphorylation of Src mediates cAMP’s inhibition of cell growth via Rap1. Mol Cell. 2002;9:8594.Google Scholar
69. Hastings, TG, Lewis, DA, Zigmond, MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA. 1996;93:195661.Google Scholar
70. Seiden, LS, Sabol, KE. In: Handbook of Neurotoxixity. Chang, LW, Dyer, RS, editors. New York: Marcel Dekker); 1995.Google Scholar
71. Rabinovic, AD, Lewis, DA, Hastings, TG. Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience. 2000;101:6776.Google Scholar
72. Larsen, KE, Fon, EA, Hastings, TG, Edwards, RH, Sulzer, D. Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J Neurosci. 2002;22:895160.Google Scholar
73. Weinberger, J, Nieves-Rosa, J, Cohen, G. Nerve terminal damage in cerebral ischemia: protective effect of alpha-methyl-para-tyrosine. Stroke. 1985;16:86470.Google Scholar
74. Buisson, A, Callebert, J, Mathieu, E, Plotkine, M, Boulu, RG. Striatal protection induced by lesioning the substantia nigra of rats subjected to focal ischemia. J Neurochem. 1992;59:11537.Google Scholar
75. Chapman, AG, Durmuller, N, Lees, GJ, Meldrum, BS. Excitotoxicity of NMDA and kainic acid is modulated by nigrostriatal dopaminergic fibres. Neurosci Lett. 1989;107:25660.Google Scholar
76. Filloux, F, Wamsley, JK. Dopaminergic modulation of excitotoxicity in rat striatum: evidence from nigrostriatal lesions. Synapse. 1991;8:2818.Google Scholar
77. Garside, S, Furtado, JC, Mazurek, MF. Dopamine-glutamate interactions in the striatum: behaviourally relevant modification of excitotoxicity by dopamine receptor-mediated mechanisms. Neuroscience. 1996;75:106574.Google Scholar
78. Maragos, WF, Jakel, RJ, Pang, Z, Geddes, JW. 6-Hydroxydopamine injections into the nigrostriatal pathway attenuate striatal malonate and 3-nitropropionic acid lesions. Exp Neurol. 1998;154:63744.Google Scholar
79. Reynolds, DS, Carter, RJ, Morton, AJ. Dopamine modulates the susceptibility of striatal neurons to 3-nitropropionic acid in the rat model of Huntington’s disease. J Neurosci. 1998;18:1011627.Google Scholar
80. Schmidt, CJ, Ritter, JK, Sonsalla, PK, Hanson, GR, Gibb, JW. Role of dopamine in the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther. 1985;233:53944.Google Scholar
81. O’Dell, SJ, Weihmuller, FB, Marshall, JF. Multiple methamphetamine injections induce marked increases in extracellular striatal dopamine which correlate with subsequent neurotoxicity. Brain Res. 1991;564:25660.Google Scholar
82. Gainetdinov, RR, Jones, SR, Caron, MG. Functional hyper-dopaminergia in dopamine transporter knock-out mice. Biol Psychiatry. 1999;46:30311.Google Scholar
83. Zhuang, X, Oosting, RS, Jones, SR, Gainetdinov, RR, Miller, GW, Caron, MG, et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci USA. 2001;98:19827.Google Scholar
84. Gainetdinov, RR, Fumagalli, F, Jones, SR, Caron, MG. Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem. 1997;69: 13225.Google Scholar
85. Fumagalli, F, Gainetdinov, RR, Valenzano, KJ, Caron, MG. Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J Neurosci. 1998;18:48619.Google Scholar
86. Miller, GW, Gainetdinov, RR, Levey, AI, Caron, MG. Dopamine transporters and neuronal injury. Trends Pharmacol Sci. 1999;20:4249.Google Scholar
87. Hollinden, GE, Sanchez-Ramos, JR, Sick, TJ, Rosenthal, M. MPP+-induced increases in extracellular potassium ion activity in rat striatal slices suggest that consequences of MPP+ neurotoxicity are spread beyond dopaminergic terminals. Brain Res. 1988;475:28390.Google Scholar
88. Obata, T, Chiueh, CC. In vivo trapping of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate: effects of MPTP, MPDP+, and MPP+. J Neural Transm Gen Sect. 1992;89:13945.Google Scholar
89. Berman, SB, Zigmond, MJ, Hastings, TG. Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J Neurochem. 1996;67:593600.Google Scholar
90. Gerhardt, GA, Cass, WA, Hudson, J, Henson, M, Zhang, Z, Ovadia, A, et al. In vivo electrochemical studies of dopamine overflow and clearance in the striatum of normal and MPTP-treated rhesus monkeys. J Neurochem. 1996;66:57988.Google Scholar
91. LaVoie, MJ, Hastings, TG. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci. 1999;19:148491.Google Scholar
92. Marey-Semper, I, Gelman, M, Levi-Strauss, M. The high sensitivity to rotenone of striatal dopamine uptake suggests the existence of a constitutive metabolic deficiency in dopaminergic neurons from the substantia nigra. Eur J Neurosci. 1993;5:102934.Google Scholar
93. Ferger, B, Eberhardt, O, Teismann, P, de Groote, C, Schulz, JB. Malonate-induced generation of reactive oxygen species in rat striatum depends on dopamine release but not on NMDA receptor activation. J Neurochem. 1999;73:132932.Google Scholar
94. Filloux, F, Townsend, JJ. Pre- and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp Neurol. 1993;119:7988.CrossRefGoogle ScholarPubMed
95. Cheng, N, Maeda, T, Kume, T, Kaneko, S, Kochiyama, H, Akaike, A, et al. Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons. Brain Res. 1996;743: 27883.Google Scholar
96. Hoyt, KR, Reynolds, IJ, Hastings, TG. Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: interactions with and differences from glutamate-induced cell death. Exp Neurol. 1997;143:26981.Google Scholar
97. Hattori, A, Luo, Y, Umegaki, H, Munoz, J, Roth, GS. Intrastriatal injection of dopamine results in DNA damage and apoptosis in rats. Neuroreport. 1998;9:256972.Google Scholar
98. McLaughlin, BA, Nelson, D, Erecinska, M, Chesselet, MF. Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by a mitochondrial inhibitor. J Neurochem. 1998;70:240615.Google Scholar
99. Luo, Y, Hattori, A, Munoz, J, Qin, ZH, Roth, GS. Intrastriatal dopamine injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NF-kappaB in rats. Mol Pharmacol. 1999;56:25464.Google Scholar
100. Chen, J, Wersinger, C, Sidhu, A. Chronic stimulation of D1 dopamine receptors in human SK-N-MC neuroblastoma cells induces nitric-oxide synthase activation and cytotoxicity. J Biol Chem. 2003;278:28089100.Google Scholar
101. Chen, J, Rusnak, M, Luedtke, RR, Sidhu, A. D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade. J Biol Chem. 2004;279:3931730.Google Scholar
102. Wersinger, C, Chen, J, Sidhu, A. Bimodal induction of dopamine-mediated striatal neurotoxicity is mediated through both activation of D1 dopamine receptors and autoxidation. Mol Cell Neurosci. 2004;25:12437.Google Scholar
103. Chen, J, Sidhu, A. The role of D1 dopamine receptors and phospho-ERK in mediating cytotoxicity. Commentary. Neurotox Res. 2005;7:17981.Google Scholar
104. Halliwell, B. Oxygen radicals as key mediators in neurological disease: fact or fiction? Ann Neurol. 1992;[32 Suppl]:S105.Google Scholar
105. Maker, HS, Weiss, C, Silides, DJ, Cohen, G. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem. 1981;36:58993.Google Scholar
106. Hastings, TG. Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem. 1995;64:91924.Google Scholar
107. Hastings, TG, Zigmond, MJ. Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]dopamine: impact of ascorbic acid and glutathione. J Neurochem. 1994;63:112632.Google Scholar
108. Daily, D, Barzilai, A, Offen, D, Kamsler, A, Melamed, E, Ziv, I. The involvement of p53 in dopamine-induced apoptosis of cerebellar granule neurons and leukemic cells overexpressing p53. Cell Mol Neurobiol. 1999;19:26176.Google Scholar
109. Daily, D, Vlamis-Gardikas, A, Offen, D, Mittelman, L, Melamed, E, Holmgren, A, et al. Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by dual activation of the ras-phosphoinositide 3-kinase and jun n-terminal kinase pathways. J Biol Chem. 2001;276:2161826.Google Scholar
110. Panet, H, Barzilai, A, Daily, D, Melamed, E, Offen, D. Activation of nuclear transcription factor kappa B (NF-kappaB) is essential for dopamine-induced apoptosis in PC12 cells. J Neurochem. 2001;77:3918.Google Scholar
111. Moldeus, P, Nordenskjold, M, Bolcsfoldi, G, Eiche, A, Haglund, U, Lambert, B. Genetic toxicity of dopamine. Mutat Res. 1983;124:924.Google Scholar
112. Spencer, JP, Jenner, A, Aruoma, OI, Evans, PJ, Kaur, H, Dexter, DT, et al. Intense oxidative DNA damage promoted by L-dopa and its metabolites. Implications for neurodegenerative disease. FEBS Lett. 1994;353:24650.Google Scholar
113. Stokes, AH, Hastings, TG, Vrana, KE. Cytotoxic and genotoxic potential of dopamine. J Neurosci Res. 1999;55:65965.Google Scholar
114. Offen, D, Hochman, A, Gorodin, S, Ziv, I, Shirvan, A, Barzilai, A, et al. Oxidative stress and neuroprotection in Parkinson’s disease: implications from studies on dopamine-induced apoptosis. Adv Neurol. 1999;80:2659.Google Scholar
115. Hou, ST, Cowan, E, Dostanic, S, Rasquinha, I, Comas, T, Morley, P, et al. Increased expression of the transcription factor E2F1 during dopamine-evoked, caspase-3-mediated apoptosis in rat cortical neurons. Neurosci Lett. 2001;306:1536.Google Scholar
116. Junn, E, Mouradian, MM. Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen-activated protein kinase, cytochrome c and caspases. J Neurochem. 2001;78:37483.Google Scholar
117. Bozzi, Y, Borrelli, E. Dopamine in neurotoxicity and neuro-protection: what do D2 receptors have to do with it? Trends Neurosci. 2006;29:16774.Google Scholar
118. Cepeda, C, Levine, MS. Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci. 1998;20:118.Google Scholar
119. Cepeda, C, Colwell, CS, Itri, JN, Chandler, SH, Levine, MS. Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol. 1998;79:8294.Google Scholar
120. Price, CJ, Kim, P, Raymond, LA. D1 dopamine receptor-induced cyclic AMP-dependent protein kinase phosphorylation and potentiation of striatal glutamate receptors. J Neurochem. 1999;73:24416.Google Scholar
121. Flores-Hernandez, J, Cepeda, C, Hernandez-Echeagaray, E, Calvert, CR, Jokel, ES, Fienberg, AA, et al. Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol. 2002;88:301020.Google Scholar
122. Dunah, AW, Standaert, DG. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci. 2001;21:554658.Google Scholar
123. Chen, G, Greengard, P, Yan, Z. Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci USA. 2004;101:2596600.Google Scholar
124. Scott, L, Kruse, MS, Forssberg, H, Brismar, H, Greengard, P, Aperia, A. Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc Natl Acad Sci USA. 2002;99:16614.Google Scholar
125. Lee, FJ, Xue, S, Pei, L, Vukusic, B, Chery, N, Wang, Y, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell. 2002;111: 21930.Google Scholar
126. Fiorentini, C, Gardoni, F, Spano, P, Di Luca, M, Missale, C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem. 2003;278:20196202.Google Scholar
127. Pei, L, Lee, FJ, Moszczynska, A, Vukusic, B, Liu, F. Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci. 2004;24:114958.Google Scholar
128. Dunah, AW, Sirianni, AC, Fienberg, AA, Bastia, E, Schwarzschild, MA, Standaert, DG. Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol. 2004;65:1219.Google Scholar
129. Snyder, GL, Fienberg, AA, Huganir, RL, Greengard, P. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci. 1998;18:10297303.Google Scholar
130. Calabresi, P, Gubellini, P, Centonze, D, Picconi, B, Bernardi, G, Chergui, K, et al. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci. 2000;20:844351.Google Scholar
131. Zhang, J, Price, JO, Graham, DG, Montine, TJ. Secondary excitotoxicity contributes to dopamine-induced apoptosis of dopaminergic neuronal cultures. Biochem Biophys Res Commun. 1998;248:8126.Google Scholar
132. Cepeda, C, Colwell, CS, Itri, JN, Gruen, E, Levine, MS. Dopaminergic modulation of early signs of excitotoxicity in visualized rat neostriatal neurons. Eur J Neurosci. 1998;10:34917.Google Scholar
133. Lang, F, Foller, M, Lang, KS, Lang, PA, Ritter, M, Gulbins, E, et al. Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 2005;205:14757.Google Scholar
134. Oh, JD, Russell, DS, Vaughan, CL, Chase, TN. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res. 1998;813:1509.Google Scholar
135. Oh, JD, Vaughan, CL, Chase, TN. Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits. Brain Res. 1999;821: 43342.Google Scholar
136. Dunah, AW, Wang, Y, Yasuda, RP, Kameyama, K, Huganir, RL, Wolfe, BB, et al. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol Pharmacol. 2000;57:34252.Google Scholar
137. Hallett, PJ, Dunah, AW, Ravenscroft, P, Zhou, S, Bezard, E, Crossman, AR, et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology. 2005;48:50316.Google Scholar
138. Sweatt, JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001;76:110.Google Scholar
139. Johnson, GL, Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:19112.Google Scholar
140. Davis, RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:23952.Google Scholar
141. Pavon, N, Martin, AB, Mendialdua, A, Moratalla, R. ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry. 2006;59:6474.Google Scholar
142. Bezard, E, Gross, CE, Qin, L, Gurevich, VV, Benovic, JL, Gurevich, EV. L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiol Dis. 2005;18:32335.Google Scholar
143. Patrick, GN, Zukerberg, L, Nikolic, M, de la Monte, S, Dikkes, P, Tsai, LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999;402:61522.Google Scholar
144. Dhavan, R, Tsai, LH. A decade of CDK5. Nat Rev Mol Cell Biol. 2001;2:74959.CrossRefGoogle ScholarPubMed
145. Borghi, R, Giliberto, L, Assini, A, Delacourte, A, Perry, G, Smith, MA, et al. Increase of cdk5 is related to neurofibrillary pathology in progressive supranuclear palsy. Neurology. 2002;58:58992.Google Scholar
146. Shelton, SB, Johnson, GV. Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem. 2004;88:131326.Google Scholar
147. Doucet, JP, Nakabeppu, Y, Bedard, PJ, Hope, BT, Nestler, EJ, Jasmin, BJ, et al. Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum. Eur J Neurosci. 1996;8:36581.Google Scholar
148. Bibb, JA, Chen, J, Taylor, JR, Svenningsson, P, Nishi, A, Snyder, GL, et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature. 2001;410:37680.Google Scholar
149. McClung, CA, Ulery, PG, Perrotti, LI, Zachariou, V, Berton, O, Nestler, EJ. DeltaFosB: a molecular switch for long-term adaptation in the brain. Brain Res Mol Brain Res. 2004;132:14654.Google Scholar
150. Cyr, M, Beaulieu, JM, Laakso, A, Sotnikova, TD, Yao, WD, Bohn, LM, et al. Sustained elevation of extracellular dopamine causes motor dysfunction and selective degeneration of striatal GABAergic neurons. Proc Natl Acad Sci USA. 2003;100:1103540.Google Scholar
151. Nestler, EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci. 2001;2:11928.Google Scholar
152. Wang, J, Liu, S, Fu, Y, Wang, JH, Lu, Y. Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci. 2003;6:103947.Google Scholar
153. Morabito, MA, Sheng, M, Tsai, LH. Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J Neurosci. 2004;24:86576.Google Scholar
154. Bibb, JA, Nishi, A, O’Callaghan, JP, Ule, J, Lan, M, Snyder, GL, et al. Phosphorylation of protein phosphatase inhibitor-1 by Cdk5. J Biol Chem. 2001;276:144907.Google Scholar
155. Norrholm, SD, Bibb, JA, Nestler, EJ, Ouimet, CC, Taylor, JR, Greengard, P. Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience. 2003;116:1922.Google Scholar
156. Fischer, A, Sananbenesi, F, Pang, PT, Lu, B, Tsai, LH. Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron. 2005;48:82538.Google Scholar
157. Lew, J, Huang, QQ, Qi, Z, Winkfein, RJ, Aebersold, R, Hunt, T, et al. A brain-specific activator of cyclin-dependent kinase 5. Nature. 1994;371:4236.Google Scholar
158. Cruz, JC, Tseng, HC, Goldman, JA, Shih, H, Tsai, LH. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron. 2003;40:47183.Google Scholar
159. Fernagut, PO, Chalon, S, Diguet, E, Guilloteau, D, Tison, F, Jaber, M. Motor behaviour deficits and their histopathological and functional correlates in the nigrostriatal system of dopamine transporter knockout mice. Neuroscience. 2003;116:112330.Google Scholar
160. Cyr, M, Caron, MG, Johnson, GA, Laakso, A. Magnetic resonance imaging at microscopic resolution reveals subtle morphological changes in a mouse model of dopaminergic hyperfunction. Neuroimage. 2005;26:8390.Google Scholar
161. Song, ZM, Undie, AS, Koh, PO, Fang, YY, Zhang, L, Dracheva, S, et al. D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J Neurosci. 2002;22:6092105.Google Scholar
162. Robertson, HA, Paul, ML, Moratalla, R, Graybiel, AM. Expression of the immediate early gene c-fos in basal ganglia: induction by dopaminergic drugs. Can J Neurol Sci. 1991;18:3803.Google Scholar
163. Hiroi, N, Graybiel, AM. Atypical and typical neuroleptic treatments induce distinct programs of transcription factor expression in the striatum. J Comp Neurol. 1996;374:7083.Google Scholar
164. Lidow, MS, Song, ZM, Castner, SA, Allen, PB, Greengard, P, Goldman-Rakic, PS. Antipsychotic treatment induces alterations in dendrite- and spine-associated proteins in dopamine-rich areas of the primate cerebral cortex. Biol Psychiatry. 2001;49:112.Google Scholar
165. Aubert, I, Guigoni, C, Hakansson, K, Li, Q, Dovero, S, Barthe, N, et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol. 2005;57:1726.Google Scholar
166. Oh, JD, Del Dotto, P, Chase, TN. Protein kinase A inhibitor attenuates levodopa-induced motor response alterations in the hemi-parkinsonian rat. Neurosci Lett. 1997;228:58.Google Scholar
167. St-Hilaire, M, Landry, E, Levesque, D, Rouillard, C. Denervation and repeated L-DOPA induce complex regulatory changes in neurochemical phenotypes of striatal neurons: implication of a dopamine D1-dependent mechanism. Neurobiol Dis. 2005;20:45060.Google Scholar
168. Andorfer, CA, Davies, P. PKA phosphorylations on tau: developmental studies in the mouse. Dev Neurosci. 2000;22:3039.Google Scholar
169. Liu, SJ, Zhang, JY, Li, HL, Fang, ZY, Wang, Q, Deng, HM, et al. Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem. 2004;279:5007888.Google Scholar
170. Zhang, Y, Li, HL, Wang, DL, Liu, SJ, Wang, JZ. A transitory activation of protein kinase-Ainduces a sustained tau hyperphosphorylation at multiple sites in N2a cells-imply a new mechanism in Alzheimer pathology. J Neural Transm. 2006;Feb 9; [Epub ahead of print].Google Scholar
171. Lebel, M, Sabou, R, Cyr, M. D1 dopamine receptor activation induced abnormal phosphorylation of tau at PKA sites. Neuroscience Meeting, Atlanta, GA, USA. 2006;abstract 468.14.Google Scholar
172. Sgambato-Faure, V, Buggia, V, Gilbert, F, Levesque, D, Benabid, AL, Berger, F. Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats. J Neuropathol Exp Neurol. 2005;64:93647.Google Scholar
173. Calon, F, Grondin, R, Morissette, M, Goulet, M, Blanchet, PJ, Di Paolo, T, et al. Molecular basis of levodopa-induced dyskinesias. Ann Neurol. 2000;47:S708.Google Scholar
174. Bezard, E, Brotchie, JM, Gross, CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2:57788.Google Scholar
175. Rascol, O, Payoux, P, Ory, F, Ferreira, JJ, Brefel-Courbon, C, Montastruc, JL. Limitations of current Parkinson’s disease therapy. Ann Neurol. 2003;53 Suppl 3:S312; discussion S12-5.Google Scholar
176. Muller, T, Hefter, H, Hueber, R, Jost, WH, Leenders, KL, Odin, P, et al. Is levodopa toxic? J Neurol. 2004;251 Suppl 6:VI/S44-6.Google Scholar
177. Olanow, CW, Agid, Y, Mizuno, Y, Albanese, A, Bonuccelli, U, Damier, P, et al. Levodopa in the treatment of Parkinson’s disease: current controversies. Mov Disord. 2004;19:9971005.Google Scholar
178. Radad, K, Gille, G, Rausch, WD. Short review on dopamine agonists: insight into clinical and research studies relevant to Parkinson’s disease. Pharmacol Rep. 2005;57:70112.Google Scholar
179. Durif, F. Treating and preventing levodopa-induced dyskinesias: current and future strategies. Drugs Aging. 1999;14:33745.Google Scholar
180. Chase, TN, Oh, JD. Striatal mechanisms and pathogenesis of parkinsonian signs and motor complications. Ann Neurol. 2000;47:S1229; discussion S29-30.Google Scholar
181. Westin, JE, Andersson, M, Lundblad, M, Cenci, MA. Persistent changes in striatal gene expression induced by long-term L-DOPA treatment in a rat model of Parkinson’s disease. Eur J Neurosci. 2001;14:11716.Google Scholar
182. Andersson, M, Westin, JE, Cenci, MA. Time course of striatal DeltaFosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment. Eur J Neurosci. 2003;17:6616.Google Scholar
183. Svenningsson, P, Gunne, L, Andren, PE. L-DOPA produces strong induction of c-fos messenger RNA in dopamine-denervated cortical and striatal areas of the common marmoset. Neuroscience. 2000;99:45768.Google Scholar
184. Andersson, M, Konradi, C, Cenci, MA. cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum. J Neurosci. 2001;21:993043.Google Scholar
185. Tekumalla, PK, Calon, F, Rahman, Z, Birdi, S, Rajput, AH, Hornykiewicz, O, et al. Elevated levels of DeltaFosB and RGS9 in striatum in Parkinson’s disease. Biol Psychiatry. 2001;50:8136.Google Scholar
186. Bugiani, O, Perdelli, F, Salvarani, S, Leonardi, A, Mancardi, GL. Loss of striatal neurons in Parkinson’s disease: a cytometric study. Eur Neurol. 1980;19:33944.Google Scholar
187. McNeill, TH, Brown, SA, Rafols, JA, Shoulson, I. Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease. Brain Res. 1988;455:14852.Google Scholar
188. Vonsattel, JP, Myers, RH, Stevens, TJ, Ferrante, RJ, Bird, ED, Richardson, EP Jr. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol. 1985; 44: 55977.Google Scholar
189. Hantraye, P. Modeling dopamine system dysfunction in experimental animals. Nucl Med Biol. 1998;25:7218.Google Scholar
190. Ghorayeb, I, Fernagut, PO, Aubert, I, Bezard, E, Poewe, W, Wenning, GK, et al. Toward a primate model of L-dopa-unresponsive parkinsonism mimicking striatonigral degeneration. Mov Disord. 2000;15:5316.Google Scholar
191. Klawans, HC, Paulson, GW, Barbeau, A. Predictive test for Huntington’s chorea. Lancet. 1970;2:11856.Google Scholar
192. McCormack, MK, Lazzarini, A. Attitudes of those at risk for Huntington’s disease toward presymptomatic provocative testing. N Engl J Med. 1982;307:1406.Google Scholar
193. Ondo, WG, Tintner, R, Thomas, M, Jankovic, J. Tetrabenazine treatment for Huntington’s disease-associated chorea. Clin Neuropharmacol. 2002;25:3002.Google Scholar
194. Hersch, SM. Huntington’s disease: prospects for neuroprotective therapy 10 years after the discovery of the causative genetic mutation. Curr Opin Neurol. 2003;16:5016.Google Scholar
195. Paleacu, D, Giladi, N, Moore, O, Stern, A, Honigman, S, Badarny, S. Tetrabenazine treatment in movement disorders. Clin Neuro-pharmacol. 2004;27:2303.Google Scholar
196. Kenney, C, Jankovic, J. Tetrabenazine in the treatment of hyperkinetic movement disorders. Expert Rev Neurother. 2006; 6:717.Google Scholar
197. Huntington Research Group. Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology. 2006;66:36672.Google Scholar
198. Fernagut, PO, Diguet, E, Jaber, M, Bioulac, B, Tison, F. Dopamine transporter knock-out mice are hypersensitive to 3-nitropropionic acid-induced striatal damage. Eur J Neurosci. 2002;15:20536.Google Scholar
199. Petersen, A, Larsen, KE, Behr, GG, Romero, N, Przedborski, S, Brundin, P, et al. Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet. 2001;10:124354.CrossRefGoogle Scholar
200. Charvin, D, Vanhoutte, P, Pages, C, Borrelli, E, Caboche, J. Unraveling a role for dopamine in Huntington’s disease: the dual role of reactive oxygen species and D2 receptor stimulation. Proc Natl Acad Sci USA. 2005;102:1221823.Google Scholar
201. Robinson, P, Cyr, M. Dopamine receptor mediated formation of mutant huntingtin aggregates. Neuroscience Meeting, Atlanta, GA, USA. 2006;abstract 277.19.Google Scholar
202. Cyr, M, Sotnikova, TD, Gainetdinov, RR, Caron, MG. Dopamine enhances motor and neuropathological consequences of polyglutamine expanded huntingtin. FASEB J. 2006;20:25413.Google Scholar
203. Van Raamsdonk, JM, Pearson, J, Slow, EJ, Hossain, SM, Leavitt, BR, Hayden, MR. Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci. 2005;25:416980.Google Scholar
204. Menalled, LB, Sison, JD, Wu, Y, Olivieri, M, Li, XJ, Li, H, et al. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington’s disease knock-in mice. J Neurosci. 2002;22:826676.Google Scholar
205. Slow, EJ, van Raamsdonk, J, Rogers, D, Coleman, SH, Graham, RK, Deng, Y, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003;12:155567.Google Scholar
206. Luo, S, Vacher, C, Davies, JE, Rubinsztein, DC. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J Cell Biol. 2005;169:64756.Google Scholar
207. Myers, RH, Sax, DS, Koroshetz, WJ, Mastromauro, C, Cupples, LA, Kiely, DK, et al. Factors associated with slow progression in Huntington’s disease. Arch Neurol. 1991;48:8004.Google Scholar
208. Feigin, A, Kieburtz, K, Bordwell, K, Como, P, Steinberg, K, Sotack, J, et al. Functional decline in Huntington’s disease. Mov Disord. 1995;10:2114.Google Scholar
209. Higgins, DS Jr. Huntington’s disease. Curr Treat Options Neurol. 2006;8:23644.Google Scholar
210. Davis, S, Brotchie, J, Davies, I. Protection of striatal neurons by joint blockade of D1 and D2 receptor subtypes in an in vitro model of cerebral hypoxia. Exp Neurol. 2002;176:22936.Google Scholar