Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T15:20:04.612Z Has data issue: false hasContentIssue false

Brain-Machine Interfaces for Motor Control: A Guide for Neuroscience Clinicians

Published online by Cambridge University Press:  02 December 2014

Allan R. Martin
Affiliation:
Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
Tejas Sankar
Affiliation:
Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
Nir Lipsman
Affiliation:
Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
Andres M. Lozano*
Affiliation:
Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
*
Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst St, 4W-447, Toronto, Ontario, M5T 2S8, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the growing interdependence between medicine and technology, the prospect of connecting machines to the human brain is rapidly being realized. The field of neuroprosthetics is transitioning from the proof of concept stage to the development of advanced clinical treatments. In one area of brain-machine interfaces (BMIs) related to the motor system, also termed ‘motor neuroprosthetics’, research successes with implanted microelectrodes in animals have demonstrated immense potential for restoring motor deficits. Early human trials have also begun, with some success but also highlighting several technical challenges. Here we review the concepts and anatomy underlying motor BMI designs, review their early use in clinical applications, and offer a framework to evaluate these technologies in order to predict their eventual clinical utility. Ultimately, we hope to help neuroscience clinicians understand and participate in this burgeoning field.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2012

References

1Drummond, K.Wired.com [Internet]. Wired: Danger Room. Pentagon preps soldier telepathy push. May 14, 2009. [cited 2009 Sep 11]. Available from: http://www.wired.com/dangerroom/2009/05/pentagon-preps-soldier-telepathy-push/Google Scholar
2Kotchetkov, IS, Hwang, BY, Appelboom, G, Kellner, CP, Connolly, ES.Brain-computer interfaces: military, neurosurgical, and ethical perspective. Neurosurg Focus. 2010;28(5):E25.CrossRefGoogle ScholarPubMed
3United States Department of Defense [Internet]. Contracts. [cited 2010 Aug 8]. Available from: http://www.defenselink.mil/contracts/contract.aspx?contractid=2296Google Scholar
4Bartels, J, Andreasen, D, Ehirim, P, et al.Neurotrophic electrode: method of assembly and implantation into human motor speech cortex. J Neurosci Meth. 2008;174:16876.CrossRefGoogle ScholarPubMed
5Birbaumer, N, Ghanayim, N, Hinterberger, T, et al.A spelling device for the paralysed. Nature. 1999;398:2978.CrossRefGoogle ScholarPubMed
6Donoghue, JP.Bridging the brain to the world: a perspective on neural interface systems. Neuron. 2008;60:51121.CrossRefGoogle Scholar
7Kubler, A, Nijboer, F, Mellinger, J, et al.Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology. 2005;64:17757.CrossRefGoogle ScholarPubMed
8Nijboer, F, Sellers, EW, Mellinger, J, et al.A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119:190916.CrossRefGoogle ScholarPubMed
9Sellers, EW, Donchin, E.AP300-based brain-computer interface: Initial tests by ALS patients. Clin Neurophysiol. 2006;117: 53848.CrossRefGoogle ScholarPubMed
10Birbaumer, N.Brain-computer-interface research: coming of age. Clin Neurophysiol. 2006;117:47983.CrossRefGoogle ScholarPubMed
11Claussen, J.Man, machine and in between. Nature. 2009;457(26):10801.CrossRefGoogle Scholar
12Daly, JJ, Wolpaw, JR.Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7:103243.CrossRefGoogle ScholarPubMed
13Del, RMilan, J, Carmena, J.Invasive or noninvasive: understanding brain-machine interface technology. IEEE Eng Med Bio Mag. 2010;29(1):1622.Google Scholar
14Hatsopoulos, NG, Donoghue, JP.The science of neural interface systems. Annu Rev Neurosci. 2009;32:24966.CrossRefGoogle ScholarPubMed
15Hochberg, LR.Turning thought into action. N Engl J Med. 2008;359 (11):11757.CrossRefGoogle ScholarPubMed
16Lebedev, MA, Nicolelis, MAL.Brain-machine interfaces: past, present, and future. Trends Neurosci. 2006;29(9):53646.CrossRefGoogle ScholarPubMed
17Leuthardt, EC, Schalk, G, Moran, DW, Ojemann, JG.The emerging world of motor neuroprosthetics: a neurosurgical perspective. Neurosurgery. 2006;59:114.Google ScholarPubMed
18Leuthardt, EC, Schalk, G, Roland, J, Rouse, A, Moran, DW.Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurg Focus. 2009;27(1):E4.CrossRefGoogle ScholarPubMed
19Mussa-Ivaldi, FA, Miller, LE.Brain-machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends Neurosci. 2003;26:32934.CrossRefGoogle ScholarPubMed
20Nicolelis, MAL.Actions from thoughts. Nature. 2001;409:4037.CrossRefGoogle ScholarPubMed
21Nicolelis, MAL.Brain-machine interfaces to restore motor function and probe neural circuits. Nature Rev Neurosci. 2003;4:41722.CrossRefGoogle ScholarPubMed
22Nicolelis, MAL, Lebedev, MA.Principles of neuronal ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci. 2009;10:53040.CrossRefGoogle ScholarPubMed
23Normann, RA.Technology insight: future neuroprosthetic therapies for disorders of the nervous system. Nature Clin Prac Neurol. 2007;3(8):44452.CrossRefGoogle ScholarPubMed
24Patil, PG, Turner, DA.The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics. 2008;5:13746.CrossRefGoogle ScholarPubMed
25Patil, PG.Introduction: advances in brain-machine interfaces. Neurosurg Focus. 2009;27(1):E1.CrossRefGoogle ScholarPubMed
26Ryu, SI, Shenoy, KV.Human cortical prostheses: lost in translation? Neurosurg Focus. 2009;27(1):E5:111.CrossRefGoogle ScholarPubMed
27Schwartz, AB, Cui, XT, Weber, DJ, Moran, DW.Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron. 2006;52:20520.CrossRefGoogle ScholarPubMed
28Scott, SH.Cortical-based neuroprosthetics: when less may be more. Nature Neurosci. 2008;11(11):12456.CrossRefGoogle ScholarPubMed
29Wickelgren, I.Tapping the mind. Science. 2003;299(5606):4969.CrossRefGoogle ScholarPubMed
30Wolpaw, JR, Birbaumer, N, McFarland, DJ, Pfurtscheller, G, Vaughan, TM.Brain-computer interfaces for communication and control. Clin Neurophys. 2002;113:76791.CrossRefGoogle ScholarPubMed
31Anderson, NR, Wisneski, K, Eisenman, L, Moran, DW, Leuthardt, EC, Krusienski, DJ.An offline evaluation of the autoregressive spectrum for electrocorticography. IEEE Trans Biomed Eng. 2009;56(3):91316.CrossRefGoogle ScholarPubMed
32Georgopoulos, AP, Schwartz, AB, Kettner, RE.Neuronal population coding of movement direction. Science. 1986;233:141619.CrossRefGoogle ScholarPubMed
33Pfurtscheller, G, Neuper, C, Guger, C, et al.Current trends in Graz brain-computer interface (BCI) research. IEEE Trans Rehab Eng. 2000;8(2):21619.CrossRefGoogle ScholarPubMed
34Ferris, DP.The exoskeletons are here. J Neuroeng Rehab. 2009;6:17.CrossRefGoogle Scholar
35Lynch, CL, Popovic, MR.Functional electrical stimulation. IEEE Contr Syst Mag. 2008;40-50.Google Scholar
36Moritz, CT, Lucas, TH, Perlmutter, SI, Fetz, EE.Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys. J Neurophysiol. 2007;97:11020.CrossRefGoogle ScholarPubMed
37Moritz, CT, Perlmutter, SI, Fetz, EE.Direct control of paralysed muscles by cortical neurons. Nature. 2008;456:63942.CrossRefGoogle ScholarPubMed
38Peckham, PH, Knutson, JS.Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng. 2005;7:32760.CrossRefGoogle ScholarPubMed
39Pfurtscheller, G, Muller, GR, Pfurtscheller, J, Gerner, HJ, Rupp, R.‘Thought’ - control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Letters. 2003;351:336.CrossRefGoogle Scholar
40Fetz, EE, Finocchio, DV.Operant conditioning of specific patterns of neural and muscular activity. Science. 1971;174:4315.CrossRefGoogle ScholarPubMed
41Jarosiewicz, B, Chase, SM, Fraser, GW, Velliste, M, Kass, RE, Schwartz, AB.Functional network reorganization during learning in a brain-computer interface paradigm. Proc Nat Acad Sci. 2008;105(49):1948691.CrossRefGoogle Scholar
42Kennedy, PR, Bakay, RA.Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport. 1998;9:170711.CrossRefGoogle ScholarPubMed
43Schmidt, EM, McIntosh, JS, Durelli, L, Bak, MJ.Fine control of operantly conditioned firing patterns of cortical neurons. Exp Neurol. 1978;61:34969.CrossRefGoogle ScholarPubMed
44Buttfield, A, Ferrez, PW, Millan, JR.Towards a robust BCI: error potentials and online learning. IEEE Trans Neural Sys Rehab Eng. 2006;14(2):1648.CrossRefGoogle ScholarPubMed
45Nicolelis, MAL, Ribiero, S.Seeking the neural code. Sci Am. 295 2006;6:707.CrossRefGoogle Scholar
46Weber, DJ, Stein, RB, Everaert, DG, Prochazka, A.Decoding sensory feedback from firing rates of afferent ensembles recorded in cat dorsal root ganglia in normal locomotion. IEEE Trans Neur Sys Rehab Eng. 2006;14(2):2403.CrossRefGoogle ScholarPubMed
47Vidal, JJ.Real-time detection of brain events in EEG. Proc of the IEEE. 1977;65(5):63341.CrossRefGoogle Scholar
48Pfurtscheller, G, Cooper, R.Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalogr Clin Neurophysiol. 1975;38:936.CrossRefGoogle Scholar
49Buzsaki, G.Rhythms of the brain. Oxford University Press; 2006.CrossRefGoogle Scholar
50Niedermeyer, E, Lopes da Silva, FH.The normal EEG of the waking adult. Baltimore: Williams and Wilkins; 1999.Google Scholar
51Nunez, PL, Srinivasan, R.Electric fields of the brain: the neurophysics of EEG. Oxford University Press; 1981.Google Scholar
52Guger, C, Edlinger, G, Harkam, W, Niedermeyer, I, Pfurtscheller, G.How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Sys Rehab Eng. 2003;11(2):1457.CrossRefGoogle ScholarPubMed
53McFarland, DJ, Krusienski, DJ, Sarnacki, WA, Wolpaw, JR.Emulation of computer mouse control with a noninvasive brain-computer interface. J Neural Eng. 2008;5:10110.CrossRefGoogle ScholarPubMed
54Min, BK, Marzelli, MJ, Yoo, SS.Neuroimaging-based approaches in the brain-computer interface. Trends Biotech. 2010;28(11): 55260.CrossRefGoogle ScholarPubMed
55Coyle, S, Ward, T, Markham, C, McDarby, G.On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces. Physiological Measurement. 2004;25:81522.CrossRefGoogle ScholarPubMed
56Sitaram, R, Zhang, H, Guan, C, et al.Temporal classification of multichannel nearinfrared spectroscopy signals of motor imagery for developing a brain computer interface. Neuroimage. 2007;34:141627.CrossRefGoogle ScholarPubMed
57Gratton, G, Fabiani, M.Shedding light on brain function: the eventrelated optical signal. Trends Cog Sci. 2001;5(8):35763.CrossRefGoogle ScholarPubMed
58Kennedy, P, Andreasen, D, Ehirim, P, et al.Using human extra-cortical local field potentials to control a switch. J Neural Eng. 2004;1:727.CrossRefGoogle ScholarPubMed
59Crone, NE, Miglioretti, DL, Gordon, B, et al.Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis: I Alpha and beta event-related desynchronization. Brain. 1998;121:227199.CrossRefGoogle ScholarPubMed
60Crone, NE, Miglioretti, DL, Gordon, B, Lesser, RP.Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain. 121:230115.CrossRefGoogle Scholar
61Leuthardt, EC, Schalk, G, Wolpaw, JR, Ojemann, JG, Moran, DW.A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 2004;1:6371.CrossRefGoogle ScholarPubMed
62Leuthardt, EC, Freudenberg, Z, Bundy, D, Roland, J.Microscale recordings from human motor cortex: implications for minimally invasive electrocortigraphic brain-computer interfaces. Neurosurg Focus. 2009;27(1):E10,18.CrossRefGoogle Scholar
63Yuen, TG, Agnew, WF, Bullara, LA.Tissue response to potential neuroprosthetic materials implanted subdurally. Biomaterials. 1987;8:13841.CrossRefGoogle ScholarPubMed
64Slutzky, MW, Jordan, LR, Krieg, T, Chen, M, Mogul, DJ, Miller, LE.Optimal spacing of surface electrode arrays for brain-machine interface applications. J Neural Eng. 2010;7(2):2600412.CrossRefGoogle ScholarPubMed
65Kozelka, JW, Pedley, TA.Beta and mu rhythms. J Clin Neurophysiol. 1990;7:191207.CrossRefGoogle ScholarPubMed
66Pfurtscheller, G, Graimann, B, Huggins, JE, Levine, SP, Schuh, LA.Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol. 2003;114:122636.CrossRefGoogle ScholarPubMed
67Singer, W.Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol. 1993;55:34974.CrossRefGoogle ScholarPubMed
68Womelsdorf, T, Schoffelen, JM, Oostenveld, R, et al.Modulation of neuronal interactions through synchronization. Science. 2007; 316:160912.CrossRefGoogle ScholarPubMed
69Leuthardt, EC, Kim, W, Anderson, N, Wisneski, K, Barbour, D, Schalk, G.Decoding speech phonemes from Broca’s area for neuroprosthetic application. Neurosurgery. 2008;62(6):1418.CrossRefGoogle Scholar
70Schalk, G, Miller, KJ, Anderson, NR, et al.Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng. 2008;5:7584.CrossRefGoogle ScholarPubMed
71Kennedy, PR, Bakay, RAE, Moore, MM, Adams, K, Goldwaithe, J.Direct control of a computer from the human central nervous system. IEEE Trans Rehab Eng. 2000;8(2):198202.CrossRefGoogle ScholarPubMed
72Mulliken, GH, Musallam, S, Andersen, RA.Decoding trajectories from posterior parietal cortex ensembles. J Neurosci. 2008;28 (48):1291326.CrossRefGoogle ScholarPubMed
73Schwartz, AB, Kettner, RE, Georgopoulos, AP.Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci. 1988;8(8):291327.CrossRefGoogle ScholarPubMed
74Rodriguez-Oroz, MC, Rodriguez, M, Guridi, J, et al.The subthalamic nucleus in Parkinson’s disease: Somatotopic organization and physiological characteristics. Brain. 2001;124:177790.CrossRefGoogle ScholarPubMed
75Donoghue, JP.Connecting cortex to machines: recent advances in brain interfaces. Nature Neurosci. 2002;5:10858.CrossRefGoogle ScholarPubMed
76Laubach, M, Wessberg, J, Nicolelis, MAL.Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task. Nature. 2000;405:56771.CrossRefGoogle ScholarPubMed
77Taylor, DM, Tillery, SIH, Schwartz, AB.Direct cortical control of 3D neuroprosthetic devices. Science. 2002;296:182932.CrossRefGoogle ScholarPubMed
78Wessberg, J, Stambaugh, CR, Kralik, JD, et al.Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature. 2000;408:3615.CrossRefGoogle ScholarPubMed
79Veliste, M, Perel, S, Spalding, MC, Whitford, AS, Schwartz, AB.Cortical control of a prosthetic arm for self-feeding. Nature. 2008;453:1098101.CrossRefGoogle Scholar
80Hochberg, LR, Serruya, MD, Friehs, GM, et al.Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442:16471.CrossRefGoogle ScholarPubMed
81Polikov, VS, Tresco, PA, Reichert, WM.Response of brain tissue to chronically implanted neural electrodes. J Neurosci Meth. 2005;148:118.CrossRefGoogle ScholarPubMed
82Shain, W, Spataro, L, Dilgen, J, et al.Controlling cellular reactive responses around neural prosthetic devices using peripheral and local intervention strategies. IEEE Trans Neural Syst Rehab Eng. 2003;11:1868.CrossRefGoogle ScholarPubMed
83Szarowski, DH, Andersen, MD, Retterer, S, et al.Brain responses to micro-machined silicon devices. Brain Res. 2003;983:2335.CrossRefGoogle ScholarPubMed
84Williams, JC, Rennaker, RL, Kipke, DR.Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res Protocols. 1999;4:30313.CrossRefGoogle ScholarPubMed
85Pang, C, Tai, YC, Burdick, JW, Andersen, RA.Electrolysis-based parylene balloon actuators for movable neural probes. Proc of 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Jan 16-19, 2007;91316.Google Scholar
86Riegar, R, Taylor, JT.Design strategies for multi-channel low-noise recording systems. Analog Integr Circ Sig Process. 2009;58:12333.CrossRefGoogle Scholar
87Rizk, M, Bossetti, CA, Jochum, TA, et al.A fully implantable 96-channel neural data acquisition system. J Neural Eng. 2009;6:114.CrossRefGoogle ScholarPubMed
88Sarpeshkar, R, Wattanapanitch, W, Arfin, SK, et al.Low-power circuits for brain-machine interfaces. IEEE Trans Biomed Circ Sys. 2008;2(3):17382.CrossRefGoogle ScholarPubMed
89Pesaran, B, Musallam, S, Andersen, RA.Cognitive neural prosthetics. Current Biol. 2006;16(3):R7780.CrossRefGoogle ScholarPubMed
90Rickert, J, Oliveira, SC, Vaadia, E, Aertsen, A, Rotter, S, Mehring, C.Encoding of movement direction in different frequency ranges of motor cortical local field potentials. J Neurosci. 2005;25:881524.CrossRefGoogle ScholarPubMed
91Pesaran, B.Uncovering the mysterious origins of local field potentials. Neuron. 2008;61:12.CrossRefGoogle Scholar
92Andersen, RA, Musallam, S, Pesaran, B.Selecting the signals for a brain-machine interface. Curr Opin Neurobiol. 2004;14:17.CrossRefGoogle ScholarPubMed
93Mehring, C, Rickert, J, Vaadia, E, Cardoso de Oliviera, S, Aertsen, A, Rotter, S.Inference of hand movements from local field potentials in monkey motor cortex. Nature Neurosci. 2003;6 (12):12534.CrossRefGoogle ScholarPubMed
94Murthy, VN, Fetz, EE.Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J Neurophysiol. 1996;76:396882.CrossRefGoogle ScholarPubMed
95Pesaran, B, Pezaris, J, Sahani, M, Mitra, PM, Andersen, RA.Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci. 2002;5:80511.CrossRefGoogle ScholarPubMed
96Zhuang, J, Truccolo, W, Vargas-Irwin, C, Donoghue, JP.Decoding 3-D reach and grasp kinematics from high-frequency local field potentials in primate motor cortex. IEEE Trans Biomed Engi. 2010;57(7):177484.CrossRefGoogle Scholar
97Katzner, S, Nauhaus, I, Benucci, A, Bonin, V, Ringach, DL, Carandini, M.Local origin of field potentials in visual cortex. Neuron. 2009;61:3541.CrossRefGoogle ScholarPubMed
98Scherberger, H, Jarvis, MR, Andersen, RA.Cortical local field potential encodes movement intentions in the posterior parietal cortex. Neuron. 2005;46:34754.CrossRefGoogle ScholarPubMed
99Kellis, SS, House, PA, Thomson, KE, Brown, R, Greger, B.Human neocortical electrical activity recorded on nonpenetrating microwire arrays: applicability for neuroprostheses. Neurosurg Focus. 2009;27(1):E9.CrossRefGoogle ScholarPubMed
100Kakei, S, Hoffman, DS, Strick, PL.Muscle and movement representations in the primary motor cortex. Science. 1999;285:21369.CrossRefGoogle ScholarPubMed
101Stark, E, Drori, R, Abeles, M.Motor cortical activity related to movement kinematics exhibits local spatial organization. Cortex. 2009;45:41831.CrossRefGoogle ScholarPubMed
102Scott, SH.Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci. 2004;5:53246.CrossRefGoogle ScholarPubMed
103Rathelot, JA, Strick, PL.Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Nat Acad Sci. 2006;103(21):825762.CrossRefGoogle ScholarPubMed
104Georgopoulos, AP.Higher order motor control. Ann Rev Neurosci. 1991;14:36177.CrossRefGoogle ScholarPubMed
105Moran, DW, Schwartz, AB.Motor cortical representation of speed and direction during reaching. J Neurophysiol. 1999;82: 267692.CrossRefGoogle ScholarPubMed
106Yanagisawa, T, Hirata, M, Saitoh, Y, et al.Neural decoding using gyral and intrasulcal electrocorticograms. Neuroimage. 2009;45:1099106.CrossRefGoogle ScholarPubMed
107Andersen, RA, Hwang, EJ, Mulliken, GH.Cognitive neural prosthetics. Annu Rev Psychol. 2010;61:16990.CrossRefGoogle ScholarPubMed
108Cohen, YE, Andersen, RA.A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci. 2002;3:55362.CrossRefGoogle ScholarPubMed
109Musallam, S, Corneil, BD, Greger, B, Scherberger, H, Andersen, RA.Cognitive control signals for neural prosthetics. Science. 2004;305:25862.CrossRefGoogle ScholarPubMed
110Rizzuto, DS, Mamelak, AN, Sutherling, WW, Fineman, I, Andersen, RA.Spatial selectivity in human ventrolateral prefrontal cortex. Nat Neurosci. 2005;8(4):41517.CrossRefGoogle ScholarPubMed
111Snyder, LH, Batista, AP, Andersen, RA.Coding of intention in the posterior parietal cortex. Nature. 1997;386:16770.CrossRefGoogle ScholarPubMed
112Ramsey, NF, van de Heuvel, MP, Kho, KH, Leijten, FSS.Towards human BCI applications based on cognitive brain systems: an investigation of neural signals recorded from the dorsolateral prefrontal cortex. IEEE Trans Neur Sys Rehab Eng. 2006;21417.Google ScholarPubMed
113Campos, M, Breznen, B, Bernheim, K, Andersen, RA.Supplementary motor area encodes reward expectancy in eye-movement tasks. J Neurophysiol. 2005;94:132535.CrossRefGoogle ScholarPubMed
114Cisek, P, Kalaska, JF.Neural correlates of mental rehearsal in dorsal premotor cortex. Nature. 2004;431:9936.CrossRefGoogle ScholarPubMed
115Kalaska, JF, Crammond, DJ.Cerebral cortical mechanisms of reaching movements. Science. 1992;255(5051):151723.CrossRefGoogle ScholarPubMed
116Rizzolatti, G, Fogassi, L, Gallese, V.Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol. 2002;12:14954.CrossRefGoogle ScholarPubMed
117Santhanam, G, Ryu, SI, Yu, BM, Afshar, A, Shenoy, KV.A high performance brain-computer interface. Nature. 2006;442:1958.CrossRefGoogle ScholarPubMed
118Tankus, A, Yeshurun, Y, Flash, T, Fried, I.Encoding of speed and direction of movement in the human supplementary motor area. J Neurosurg. 2009;110:130416.CrossRefGoogle ScholarPubMed
119Kandel, ER, Schwartz, JH, Jessell, TM.Principles of Neural Science. 3rd Ed. E Norwalk, Conneticut: Appleton & Lange; 1991.Google Scholar
120Amador, N, Fried, I.Single-neuron activity in the human supplementary motor area underlying preparation for action. J Neurosurg. 2004;100:2509.CrossRefGoogle ScholarPubMed
121Paradiso, G, Saint-Cyr, JA, Lozano, AM, Lang, AE, Chen, R.Involvement of the human subthalamic nucleus in movement preparation. Neurol. 2003;61:153845.CrossRefGoogle ScholarPubMed
122Paradiso, G, Cunic, D, Saint-Cyr, JA, et al.Involvement of human thalamus in the preparation of self-paced movement. Brain. 2004;127:271731.CrossRefGoogle ScholarPubMed
123Purzner, J, Paradiso, G, Cunic, D.Involvement of the basal ganglia and cerebellar motor pathways in the preparation of self-initiated and externally triggered movements in humans. J Neurosci. 2007;27(22):602936.CrossRefGoogle ScholarPubMed
124Patil, PG, Carmena, JM, Nicolelis, MAL, Turner, DA.Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain-machine interface. Neurosurgery. 2004;55(1):2738.CrossRefGoogle ScholarPubMed
125Adachi, Y, Kawai, J, Miyamoto, M, et al.IEEE Trans App Supercond. 2009;19(3):8616.CrossRefGoogle Scholar
126Kawabata, S, Komori, H, Mochida, K, Ohkubo, H, Shinomiya, H.Visualization of conductive spinal cord activity using a biomagnetometer. Spine. 2003;27:4759.CrossRefGoogle Scholar
127Stein, RB, Mushahwar, V.Reanimating limbs after injury or disease. Trends Neurosci. 2005;28(10):51824.CrossRefGoogle ScholarPubMed
128Vogelstein, RJ, Tenore, FVG, Guevremont, L, Etienne-Cummings, R, Mushahwar, VK.A silicon central pattern generator controls locomotion in vivo. IEEE Trans Biomed Circ Sys. 2008;2(3):21222.CrossRefGoogle ScholarPubMed
129Peckham, PH, Kilgore, KL, Keith, MW, Bryden, AM, Bhadra, N, Montague, FW.An advanced neuroprosthesis for restoration of hand and upper arm control using an implantable controller. J. Hand Surg. 2002;27A:26576.CrossRefGoogle Scholar
130Wilkinson, HA.Hope, false hope, and self-fulfilling prophecy. Surg Neurol. 2005;63(1):846.CrossRefGoogle ScholarPubMed
131Birbaumer, N.Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology. 2006;43:51732.CrossRefGoogle ScholarPubMed
132Neumann, N, Kubler, A.Training locked-in patients: a challenge for the use of brain-computer interfaces. IEEE Trans Neur Sys Rehab Engin. 2003;11(2):16972.CrossRefGoogle ScholarPubMed
133Donoghue, JP, Nurmikko, A, Black, M, Hochberg, LR.Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J Physiol. 2007;579(3):60311.CrossRefGoogle ScholarPubMed
134ClinicalTrials.gov [Internet]. Braingate2: feasibility study of an intracortical neural interface system for persons with tetraplegia. [cited 2010 Aug 7]. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00912041Google Scholar
135Katalavox, Kempf [Internet]. Voice activated power wheelchair and other devices for quadriplegics. [cited 2010 Aug 7]. Available from: http://www.katalavox.com/wheelch1.htmGoogle Scholar
136Taylor, TN, Davis, PH, Torner, JC, Holmes, J, Meyer, JW, Jacobson, MF.Lifetime cost of stroke in the United States. Stroke. 1996;27:145966.CrossRefGoogle ScholarPubMed
137Duncan, PW, Goldstein, LB, Horner, RD, Landsman, PB, Samsa, GP, Matchar, DB.Similar motor recovery of upper and lower extremities after stroke. Stroke. 1994;25:11818.CrossRefGoogle ScholarPubMed
138Buch, E, Weber, C, Cohen, LG, et al.Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39:91017.CrossRefGoogle ScholarPubMed
139Wisneski, KJ, Anderson, N, Schalk, G, Smyth, M, Moran, D, Leuthardt, EC.Unique cortical physiology associated with ipsilateral hand movements and neuroprosthetic implications. Stroke. 2008;39: 33519.CrossRefGoogle ScholarPubMed
140Al-Otaibi, FAJ, Alabousi, A, Burneo, JG, Lee, DH, Parrent, AG, Steven, DA.Clinically silent magnetic resonance imaging findings after subdural strip electrode implantation. J Neurosurg. 2010;112:4616.CrossRefGoogle ScholarPubMed
141Placantonakis, DG, Shariff, S, Lafaille, F, et al.Bilateral intracranial electrodes for lateralizing intractable epilepsy: efficacy, risk, and outcome. Neurosurgery. 2010;66(2):27483.CrossRefGoogle ScholarPubMed
142Voges, J, Waerzeggers, Y, Maarour, M, et al.Deep-brain stimulation: long-term analysis of complications caused by hardware and surgery - experiences from a single center. J Neurol Neurosurg Psychiatry. 2006;77:86872.CrossRefGoogle Scholar
143Farwell, LA, Donchin, E.Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70:51023.CrossRefGoogle Scholar
144Wolpaw, JR, McFarland, DJ.Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. PNAS. 2004;101(51):1784954.CrossRefGoogle ScholarPubMed
145Anderson, K.Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21(10):137183.CrossRefGoogle ScholarPubMed