Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T08:07:24.426Z Has data issue: false hasContentIssue false

The Beta-Amino Acid Transport System in Friedreich's Ataxia

Published online by Cambridge University Press:  18 September 2015

S.B. Melançon
Affiliation:
Centre de Recherche Pédiatrique de I'Hôpital Ste-Justine, Département de Pédiatric et de NeurologicUniversité de Montréal
B. Grignon
Affiliation:
Centre de Recherche Pédiatrique de I'Hôpital Ste-Justine, Département de Pédiatric et de NeurologicUniversité de Montréal
E. Ledru
Affiliation:
Centre de Recherche Pédiatrique de I'Hôpital Ste-Justine, Département de Pédiatric et de NeurologicUniversité de Montréal
G. Geoffroy
Affiliation:
Centre de Recherche Pédiatrique de I'Hôpital Ste-Justine, Département de Pédiatric et de NeurologicUniversité de Montréal
M. Potier
Affiliation:
Centre de Recherche Pédiatrique de I'Hôpital Ste-Justine, Département de Pédiatric et de NeurologicUniversité de Montréal
L. Dallaire
Affiliation:
Centre de Recherche Pédiatrique de I'Hôpital Ste-Justine, Département de Pédiatric et de NeurologicUniversité de Montréal
M. Vanasse
Affiliation:
Centre de Recherche Pédiatrique de I'Hôpital Ste-Justine, Département de Pédiatric et de NeurologicUniversité de Montréal
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Taurine and β-amino uptake in cultured skin fibroblasts proceeds through at least two distinct amino acid transport systems. The predominant Bamino acid uptake system which we refer to as the “Beta” system, incorporates taurine in a proportion of 95%, β-alanine in a proportion of 80% and does not incorporate β-amino-isobutyric acid. A second transport system for β-alanine seems to be operative in cultured skin fibroblasts and this system shares the characteristics of system “L” for branched-chain and ringside neutral amino acids. Results of ion depletion experiments, metabolic inhibition by drugs and blocking agents and previous kinetic studies of taurine and β-alanine uptake in cultured skin fibroblasts failed to disclose any major difference in β-amino acid transport between control individuals and patients with Friedreich's ataxia.

Type
Quebec Cooperative Study of Friedreich's Ataxia
Copyright
Copyright © Canadian Neurological Sciences Federation 1980

References

REFERENCES

Azari, J. and Huxtable, R.J. (1980). The mechanism of the adrenergic stimulation of taurine influx in the heart. Eruop. J. Pharmacol. 61: 217223.CrossRefGoogle ScholarPubMed
Borg, J.Balcar, V.J. and Mandel, P. (1979a). Effect of cyclic nucleotides on high affinity uptake of L-glutamate and taurine in glial and neuroblastoma cells. Brain Res. 166, 113120.CrossRefGoogle ScholarPubMed
Borg, J., Balcar, V.J., Mark, J. and Mandel, P. (1979b). Characterization of taurine uptake by neuronal and glial cells in culture. J. of Neurochem. 32: 18011805.CrossRefGoogle ScholarPubMed
Chesney, R.W., Scriver, C.R. and Mohyuddin, F. (1976). Localization of membrane defect in transepithelial transport of taurine by parallel studies in vivo and in vitro in hypertaurinemic mice. J. Clin. Invest. 57: 183193.CrossRefGoogle ScholarPubMed
Chesney, R.W., Jax, D.K., Scriver, C.R. and Mohyuddin, F. (1978). Taurine transport in mammalian kidney. In taurine and neurological disorders, Editors: Barbeau, A. and Huxtable, R.J., Raven Press pp. 7393.Google Scholar
Chesney, R.W. and Jax, D.K. (1979a). Developmental aspects of renal β-amino acid transport. I. Ontogeny of taurine reabsorption and accumulation in rat renal cortex. Pediat. Res. 13: 854860.CrossRefGoogle ScholarPubMed
Chesney, R.W. and Jax, D.K. (1979b). Developmental aspects of renal β-amino acid transport II. Ontogeny of uptake and efflux processes and effect of anoxia. Pediat. Res. 13: 861867.CrossRefGoogle Scholar
Chesney, R.W. and Jax, D.K. (1979c). The influence of glutathione oxidation on renal cortex taurine transport. Life Sciences 25: 14971506.CrossRefGoogle ScholarPubMed
Chubb, J. and Huxtable, R. (1978a). Isoproterenol-stimulated taurine influx in the perfused rat heart. Europ. J. Pharmacol. 48: 369376.CrossRefGoogle ScholarPubMed
Chubb, J. and Huxtable, R. (1978b). The effects of Isoproterenol on taurine concentration in the rat heart. Europ. J. Pharmacol. 48: 357367.CrossRefGoogle ScholarPubMed
Chubb, J. and Huxtable, R.J. (1978c). Transport and biosynthesis of taurine in the stressed heart. In taurine and neurological disorders. Editors: Barbeau, A. and Huxtable, R.J., Raven Press pp. 161178.Google Scholar
Cutler, R.W.P. and Coull, B.M. (1978). Amino acid transport in brain. In: Taurine and neurological disorders. Editors: Barbeau, A. and Huxtable, R.J., Raven Press pp. 95 à 107.Google Scholar
Filla, A., Butterworth, R.F., Geoffroy, G., Lemieux, B. and Barbeau, A. (1978). Platelet taurine uptake in spinocerebellar degeneration. Can. J. Neurol. Sci. 5: 119123.CrossRefGoogle ScholarPubMed
Filla, A., Butterworth, R.F. and Barbeau, A. (1979). Pilot studies on membranes and some transport mechanisms in Friedreich’s Ataxia. Can. J. Neurol. Sci. 3: 389397.Google Scholar
Gras, J., Tuset, N., Caralps, A., Gilvernet, J.M., Magrina, H., Brulles, A. and Conde, M. (1968). β-alaninuria following human renal allotransplantation. Clin. Chim. Acta 20: 295298.CrossRefGoogle ScholarPubMed
Guidotti, G.G., Borghetti, A.F. and Gazzola, G.C. (1978). The regulation of amino acid transport in animal cells. Biochim. Biophys. Acta 515: 329366.CrossRefGoogle ScholarPubMed
Hall, CD., Stowe, F.R. and Summer, G.K. (1974). Familial cerebellar dyssynergia and myoclonus epilepsy associated with defect of amino acid metabolism. Neurology 24: 375.Google Scholar
Hammerman, M. and Sacktor, B. (1978). Transport of β-alanine in renal brush border membrane vesicles. Biochim. Biophys. Acta 509: 338347.CrossRefGoogle ScholarPubMed
Hruska, R.E., Huxtable, R.J. and Yamamura, H.I. (1978a). High-affinity, temperature-sensitive and sodium-dependent transport of taurine in Rat brain. In taurine and neurological disorders. Editors Barbeau, A. and Huxtable, R.J.. Raven Press pp. 109117.Google Scholar
Hruska, R.E., Padjen, A., Bressler, R. and Yamamura, H.I. (1978b). Taurine sodium-dependent, high affinity transport into rat brain synaptosomes. Molec. Pharmacol. 14: 7785.Google ScholarPubMed
Huxtable, R.J. and Chubb, J. (1977). Adrenergic stimulation of taurine transport by the heart. Science 198: 409411.CrossRefGoogle ScholarPubMed
Huxtable, R., Azari, J., Reisine, T., Johnson, P., Yamamura, H.I. and Barbeau, A. (1979). Regional distribution of amino-acids in Friedreich’s Ataxia brains. Can. J. Neurol. Sci. 6: 255259.CrossRefGoogle ScholarPubMed
Lemieux, B., Barbeau, A., Beroniade, V., Shapcott, D., Breton, G., Geoffroy, G. and Melançon, S.B. (1976). Amino acid metabolism in Friedreich’s Ataxia. Can. J. Neurol. Sci. 3: 373378.CrossRefGoogle ScholarPubMed
Lombardini, J.B. (1978). High-affinity transport of taurine in the mammalian central nervous system. In taurine and neurological disorders. Editors: Barbeau, A. and Huxtable, R.J., Raven Press pp. 119135.Google Scholar
Martin, D.L. and Shain, W. (1979). High-affinity transport of taurine and β-alanine and low affinity transport of 7-aminobutyric acid by a single transport system in cultured glioma cells. J. Biol. Chem. 254: (15): 70767084.CrossRefGoogle Scholar
Melançon, S.B., Grignon, B., Potier, M. and Dallaire, L. (1979a). Taurine and β-alanine uptake in cultured human skin fibroblasts from patient with Friedreich’s Ataxia. Can. J. Neurol. Sci. 6: 251253.CrossRefGoogle ScholarPubMed
Melançon, S.B., Grenier, B., Dallaire, L.,Potier, M., Fontaine, G., Grignon, B., Geoffroy, G., Lemieux, B. and Barbeau, A. (1979b). Dicarboxylic amino acid uptake in normal, Friedreich’s Ataxia and dicarboxylic aminoaciduria fibroblasts. Can. J. Neurol. Sci. 6: 263275.CrossRefGoogle ScholarPubMed
Nevin, N.C., Hurwitz, L.J. and Neill, D.W. (1966). Familial camptodactyly with taurinuria. J. Med. Genet. 3: 265268.CrossRefGoogle ScholarPubMed
Rozen, R., Tenenhouse, H.S. and Scriver, C.R. (1979). Taurine transport in renal brush-border-membrane vesicles. Biochem. J. 180: 245248.CrossRefGoogle ScholarPubMed
Scriver, C.R., Pueschel, S. and Davies, E. (1966). Hyper-β-alaninemia associated with β-aminoaciduria and y-aminobutyric aciduria, somnolence and seizures. New Engl. J. Med. 274: 636643.CrossRefGoogle Scholar
Takao, T., Yasumitsu, T.. Vozumi, T., Kakimoto, Y. and Kanazawa, A. (1968). β-alaninuria in patients with tuberculosis. Nature (London) 217: 365366.CrossRefGoogle ScholarPubMed