Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-01T08:14:59.689Z Has data issue: false hasContentIssue false

Alterations of Membrane Phosphorylation in Erythrocyte Membranes from Patients with Duchenne Muscular Dystrophy

Published online by Cambridge University Press:  18 September 2015

J.D. Vickers*
Affiliation:
MRC Group in Developmental Neurobiology, Department of Neurosciences, McMaster University Medical Centre, Hamilton, Ontario, Canada
A.J. McComas
Affiliation:
MRC Group in Developmental Neurobiology, Department of Neurosciences, McMaster University Medical Centre, Hamilton, Ontario, Canada
M.P. Rathbone
Affiliation:
MRC Group in Developmental Neurobiology, Department of Neurosciences, McMaster University Medical Centre, Hamilton, Ontario, Canada
*
McMaster University, Dept. of Neuroscience, 1200 Main St. W., Hamilton, Ontario, Canada L8S 4J9
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The phosphorylation of spectrin, hand 3 protein, and the phospholipids of erythrocyte membranes (ghosts) was examined in 10 patients with Duchenne muscular dystrophy (DMD) and in healthy age- and sex-matched controls. The rales of phosphorylation of spectrin and band 3 protein were significantly higher in ghosts prepared from patient blood than from control blood at both 30° C and 37° C. However, the mean increases in the rate of phosphorylation of both spectrin and band 3 protein in response to a temperature change from 30° C to 37° C were identical in gliosis from patient and controls. Phosphorylation of phospholipid and its temperature response did not differ between patients and controls. These results complement previous observations of differences in erythrocytes from patients with DMD. The similarity of the changes in phosphorylation of both spectrin and band 3 protein indicates a common cause, possibly their lipid environment.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1978

References

REFERENCES

Appel, S.H. and Roses, A.D. (1976). Membrane biochemical studies in myotonic muscular dystrophy. In: Membranes and Disease, Edit. Bolis, L., Hoffman, J.F. and Leaf, A., New York: Raven Press, pp 183195.Google Scholar
Aster, R.H. and Jandl, J.H. (1964). Platelet sequestration in man. I. Methods. J. Clin. Invest. 43, 843855.CrossRefGoogle ScholarPubMed
Avruch, I. and Fairbanks, G. (1974). Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases 1: A monovalent cation-stimulated reaction. Biochem. 13. 55075513.CrossRefGoogle Scholar
Birchmeier, W. and Singer, S.J. (1977). On the mechanism of ATP-induced shape changes in human erythrocyte membranes. 11 The role of ATP. J. Cell. Biol. 73, 647659.CrossRefGoogle Scholar
Brown, H.D., Chattopadhyay, S.K. and Patel, A.B. (1967). Erythrocyte abnormality in human myopathy. Science 157. 15771578.CrossRefGoogle ScholarPubMed
Butterfield, D.A., Chestnut, D.B., Appel, S.H. and Roses, A.D. (1976). Spin label study of erythrocyte membrane fluidity in myotonic, and Duchenne muscular dystrophy and congenital myotonia. Nature 263, 159161.CrossRefGoogle ScholarPubMed
Butterfield, D.A. (1977). Electron spin resonance investigations of membrane proteins in erythrocytes in muscle diseases. Biochim. Biophys. Acta 470, 17.CrossRefGoogle ScholarPubMed
Coleman, R. (1973). Membrane-bound enzymes and membrane ultrastructure. Biochim. Biophys. Acta 300. 130.CrossRefGoogle ScholarPubMed
Dhalla, N.S., McNamara, D.B., Bala-Subramanian, V., Greenlaw, R. and Tucker, F.R. (1973). Alterations in adenosine triphosphatase activities in dystrophic musclesarcolcmma. Res. Comm. Path. Pharmacol. 6. 643650.Google Scholar
De Kruyff, B., Van Duck, P.W.M., Goldbach, R.W., Demel, R.A. and Van Deenan, L.L.M. (1973). Influence of fatty acid and sterol composition on the lipid phase transition and activity of membrane-bound enzymes in Acholeplasma laidawii. Biochim. Biophys. Acta 330, 269282.CrossRefGoogle Scholar
Edwards, A.L. (1976). An Introduction to Linear Regression and Correlation. San Francisco: W. H. Freeman.Google Scholar
Engel, W.K. (1974). The vascular hypothesis. In: Recent Advances in Myology; Proc. 3rd Internat. Congr. on Muscle Disease. Edit. Bradley, W.G., Gardner-Medwin, D. and Walton, J.N.. Amsterdam. Elseivicr. p. 166.Google Scholar
Evans, H.A. and Lacelle, D.L. (1975). Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood 45, 29.CrossRefGoogle ScholarPubMed
Fairbanks, G., Steck, T.L. and Wallach, D.F.H. (1971). Electro-phoretic analysis of the major polyeptides of the human erythrocyte membrane. Biochem. 10, 26062617.CrossRefGoogle Scholar
Farias, R.N., Bloj, B., Morero, R.D., Sineriz, F. and Trucco, R.E. (1973), Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition. Biochim. Biophys. Acta 415, 231251.CrossRefGoogle Scholar
Hesketh, T.R., Smith, G.A., Houslay, M.D., McGill, K.A., Birdsall, N.J.M., Metcalfe, J.C. and Warren, G.B. (1976). Annular lipids determine the ATP-ase activity of a calcium transport protein complcxcd with dipalmitoyl-lecithin. Biochem. 15,41454151.CrossRefGoogle Scholar
Hodson, A. and Pleasure, D. (1977). Erythrocyte cation-activated adenosine triphosphatases in Duchenne muscular dystrophy. J. Neurol. Sci. 32. 361369.CrossRefGoogle ScholarPubMed
Hosey, M.M. and Tao, M. (1977). Protein kinases and membrane phosphorylation. In: Current Topics in Membrane Research. Edit. Bronner, F. and Kleinzeller, A.. New York: Academic Press, pp. 265266.Google Scholar
Howland, J.L. and Iyer, S.L. (1977). Erythrocyte lipids and heterozygous carriers of Duchenne muscular dystrophy. Science 198, 309310.CrossRefGoogle ScholarPubMed
Iyer, S.L., Katyara, S.S. and Howland, J.L. (1976). Elevated erythrocyte phosphorylation associated with Duchenne and myotonic muscular dystrophy. Neuro-sci. Letters 2. 103106.CrossRefGoogle Scholar
Jain, M.K. and White, H.B. (1977). Long range order in biomembranes. In: Advances in Lipid Research. Vol. 15. Edit. Paoletti, R. and Kritchevsky, D.. New York: Academic Press, pp 161.Google Scholar
Kalofoutis, A., Jullien, G. and Spanos, V. (1967). Erythrocyte phospholipids in Duchenne muscular dystrophy. Clin. Chim. Acta 74, 8587.CrossRefGoogle Scholar
Kimelberg, H.K. (1975). Alterations in phospholipid-dependent (Na++K*) ATPase activity due to lipid fluidity. Effects of cholesterol and Mg2+. Biochim. Biophys. Acta 413, 143156.CrossRefGoogle ScholarPubMed
Kreiner, P.W., Keirns, J.J. and Bitensky, M.W. (1973). A temperature-sensitive change in the energy of activation of hormone-stimulated hepatic adenyl cyclase. Proc. Nat. Acad. Sci. USA 70, 17851789.CrossRefGoogle Scholar
Kumamoto, J., Raison, J.K. and Lyons, J.M. (1971). Temperature “breaks” in Arrhenius plots: A thermodynamic con-sequence of a phase change. J. Theor. Biol. 31. 4751.CrossRefGoogle Scholar
Kunze, D., Reichmann, G., Egger, E., Leuschner, G. and Eckhardt, H. (1973). Erythroz.ytenlipide bei progressiver muskeldystrophie. Clin. Chim. Acta 43, 333341.CrossRefGoogle Scholar
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193: 265269.CrossRefGoogle ScholarPubMed
Mawatari, S., Takagi, A. and Rowland, L.P. (1974). Adenyl cyclase in normal and pathologic human muscle. Arch. Neurol. 30. 96102.CrossRefGoogle ScholarPubMed
Mawatari, S., Miranda, A. and Rowland, L.P. (1976). Adenyl cyclase abnormality in Duchenne muscular dystrophy: Muscle cells in culture. Neurol. 26, 10211026.CrossRefGoogle ScholarPubMed
Mawatari, S., Schonberg, M. and Olarte, K. (1976). Biochemical abnormalities of erythrocyte membranes in Duchenne dystrophy. Arch. Neurol. 33. 489493.CrossRefGoogle ScholarPubMed
McComas, A.J., Sica, R. and Campbell, J.J. (1971). Sick niotoneurones. A unifying concept of muscle disease. Lancet 1:321326.CrossRefGoogle ScholarPubMed
McComas, A.J. (1977). Neurological Function and Disorders. Butterworth. London.Google Scholar
Missirlis, Y.F., Kohn, I.J., Vickers, J.D., Rathbone, M.P., Chul, D.H.K., McComas, A.J., and Brain, M.C. (1977). Alterations in erythrocyte membrane material properties: A marker of the abnormality in human and chicken muscular dystrophy. In: Proc. 4th Internat. Conf. on Red Cell Metabolism and Function (in press).Google Scholar
Niebroj-Dobosz, I. (1976). Erythrocyte ghosts (Na++K+) ATPase activity in Duchenne’s dystrophy and myotonia. J. Neurol. 214, 6169.CrossRefGoogle ScholarPubMed
Percy, A.K. and Miller, M.E. (1975). Reduced deformability of erythrocyte membranes from patients with Duchenne muscular dystrophy. Nature 258, 147148.CrossRefGoogle ScholarPubMed
Peter, J.B., Worsfold, M. and Pearson, C.M. (1969). Erythrocyte ghost adenosine triphosphatase (ATPase) in Duchenne dystrophy. J. Lab. Clin. Med. 74, 103108.Google ScholarPubMed
Pinder, J.C., Bray, D. and Gratzer, W.B. (1977). Control of interaction of spectrin and actin by phosphorylation. Nature 270. 752754.CrossRefGoogle ScholarPubMed
Puchwein, G., Pfeuffer, T. and Helm-Reich, E.J.M. (1974). Uncoupling of catecholamine activation of pigeon erythrocyte membrane adenylate cyclase by filipin. J. Biol. Chem. 249. 32323240.CrossRefGoogle ScholarPubMed
Raison, J.K., Lyons, J.M., Mehlhorn, R.J. and Keith, A.D. (1971). Temperature-induced PKase changes in mitochondrial membranes detected by spin labelling. J. Biol. Chem. 246, 40364040.CrossRefGoogle Scholar
Roses, A.D. and Appel, S.H. (1976). Erythrocyte spectrin peak II phosphorylation in Duchenne muscular dystrophy. J. Neurol. Sci. 29, 185193.CrossRefGoogle ScholarPubMed
Roses, A.D., Herbstreith, M.H. and Appel, S.H. (1975). Membrane protein kinase alteration in Duchenne muscular dystrophy. Nature 254, 350351.CrossRefGoogle ScholarPubMed
Roses, A.D., Roses, M.J., Miller, S.E., Hull, K.L. Jr. and Appel, S.H. (1976a). Carrier detection in Duchenne muscular dystrophy. New Eng. J. Med. 294. 193198.CrossRefGoogle ScholarPubMed
Roses, A.D., Herbstreith, M.Metcalf, B. and Appel, S.H. (1976b). Increased phosphorylated components of erythrocyte membrane spectrin band II with reference to Duchenne muscular dystrophy. J. Neurol. Sci. 30. 167178.CrossRefGoogle ScholarPubMed
Runyon, R.P. and Haber, A. (1972). Fundamentals of Behavioural Statistics. 2nd Edition. Menlo Park. California: Addison-Wesley Publishing Co., pp 204209.Google Scholar
Sha’afl, R.I., Rodan, S.B., Hintz, R.L., Fernandez, S.M. and Rodan, G.A. (1975). Abnormalities in membrane microviscosity and ion transport in genetic muscular dystrophy. Nature 254. 525526.Google Scholar
Sheetz, M.P. and Singer, S.J. (1977). On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J. Cell. Biol. 73. 638646.CrossRefGoogle ScholarPubMed
Stewart, P.A., Werstiuk, E.S., Vickers, J.D. and Rathbone, M.P. (1977), Elevated cholesterol levels in tissues of chicken embryos with hereditary myotonic muscular dystrophy. Exptl. Neurol. 57, 475485.CrossRefGoogle Scholar
Vickers, J.D. and Rathbone, M.P. (1977). Effect of erythrocyte membrane cholesterol on a membrane protein kinase activity. In: Proc. 20th Ann. Mtg. Canadian Fed. Biol. Soc. pp 65.Google Scholar
Warren, G.B., Housley, M.D., Met-Calf, J.C. and Birdsall, N.J.M. (1975). Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature 255, 684687.CrossRefGoogle ScholarPubMed
Weber, K. and Osborn, M. (1969). The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 44064412.CrossRefGoogle ScholarPubMed