Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T01:53:48.063Z Has data issue: false hasContentIssue false

Accuracy of Conventional MRI in ALS

Published online by Cambridge University Press:  23 September 2014

Aparna Gupta
Affiliation:
Departments of Medicine (Neurology), University of Ottawa, Ottawa, Ontario, Canada
Thanh Binh Nguyen
Affiliation:
Diagnostic Imaging, University of Ottawa, Ottawa, Ontario, Canada
Santanu Chakraborty
Affiliation:
Diagnostic Imaging, University of Ottawa, Ottawa, Ontario, Canada
Pierre R. Bourque*
Affiliation:
Departments of Medicine (Neurology), University of Ottawa, Ottawa, Ontario, Canada
*
The Ottawa Hospital (Civic Campus), Room C2178, 1053 Carling Ave , Ottawa, Ontario, K1Y-4E9, Canada. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

There is currently no definite neuroimaging test to detect amyotrophic lateral sclerosis (ALS), which leads to significant delay in diagnosis, particularly if one takes into account the rapidity of disease evolution. Hyperintensity of the corticospinal tracts (CST) on T2 or fluid-attenuated inversion recovery (FLAIR) weighted magnetic resonance imaging (MRI) has been well described, but data on sensitivity and specificity in larger series is lacking to help guide its application to clinical care.

Methods:

We analyzed clinical and MRI data from 64 patients with a definite retrospective diagnosis of ALS. In this case-control study, two experienced blinded neuroradiologists systematically assessed defined rostrocaudal segments of the intracranial course of the CST.

Results:

The overall sensitivity and specificity of conventional MRI for the diagnosis of ALS were 48% and 76% respectively. Highest specificities for CST hyperintensity were noted for the subcortical white matter (92%), centrum semiovale (88%) and medullary pyramids (92%). The lowest specificities were found for the cerebral peduncle (36%) and internal capsule (32%). We did not find a correlation with the rate of clinical progression, age of onset or the presence of upper motor neuron signs on examination.

Conclusion:

Conventional MRI was not found to be a reliable diagnostic tool for ALS and it did not help predict clinical characteristics such as speed of evolution or prominence of upper motor neuron signs. Its main role in the setting of ALS should remain to help exclude alternative diagnostic considerations. A multimodal approach relying on newer functional and structural MRI techniques still needs to be developed and validated.

Résumé

RÉSUMÉ

Précision de PIRM conventionnelle dans la SLA.

Contexte:

Il n'existe pas actuellement de test de neuroimagerie pour détecter la SLA, ce qui occasionne des délais importants dans le diagnostic de la maladie, particulièrement si on tient compte de la rapidité d'évolution de celle-ci. Une hyperintensité des faisceaux pyramidaux (FP) sur les séquences pondérées en T2 ou FLAIR de l'imagerie par résonance magnétique (IRM) a été bien décrite, mais il n'existe pas de données sur sa sensibilité et sa spécificité chez de plus grandes séries de patients pour guider son application en clinique.

Méthode:

Nous avons analysé les données cliniques et d'IRM de 64 patients chez qui un diagnostic rétrospectif définitif de SLA avait été posé. Dans cette étude cas-témoin, deux neuroradiologistes d'expérience ont évalué systématiquement en aveugle des segments rostrocaudaux bien défmis de la portion intracrânienne des FP.

Résultats:

La sensibilité et la spécificité globales de l'IRM conventionnelle pour le diagnostic de la SLA étaient respectivement de 48% et 76%. Les spécificités les plus élevées pour l'hyperintensité des FP ont été observées pour la substance blanche sous-corticale (92%), le centre ovale de Vieussens (88%) et les pyramides médullaires (92%). Les spécificités les plus faibles ont été observées pour le pédoncule cérébral (36%) et la capsule interne (32%). Nous n'avons pas observé de corrélation avec la rapidité de progression clinique, l'âge de début ou la présence de signes du neurone moteur supérieur à l'examen.

Conclusion:

Selon nos observations, PIRM conventionnel n'était pas un outil diagnostic fiable dans la SLA et n'aidait pas à prédire les caractéristiques cliniques telles la rapidité d'évolution ou l'importance des signes du neurone moteur supérieur. Son principal rôle dans le contexte de la SLA devrait se limiter à l'exclusion d'autres pathologies. Une approche multimodale fondée sur des techniques plus récentes d'IRM fonctionnelle et structurelle devra être développée et validée.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2014

References

1. M, Filippi, Agosta, F, Abrahams, S, Fazekas, F, et al. EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases. Eur J Neurol. 2010 Apr;17(4):526e20.Google Scholar
2. Iwasaki, Y, Kinoshita, M, Ikeda, K, Takamiya, K, Shiojima, T. MRI in patients with amyotrophic lateral sclerosis: correlation with clinical features. Int J Neurosci. 1991 Aug;59(4):2538.Google Scholar
3. Mascalchi, M, Salvi, F, Valzania, F, Marcacci, G, Bartolozzi, C, Tassinari, CA. Corticospinal tract degeneration in motor neuron disease. Am J Neuroradiol. 1995 Apr;16(4 Suppl):87880.Google Scholar
4. Friedman, DP, Tartaglino, LM. Amyotrophic lateral sclerosis: hyperintensity of the corticospinal tracts on MR images of the spinal cord. Am J Roentgenol. 1993 Mar;160(3):6046.Google Scholar
5. Iwasaki, Y, Ikeda, K, Shiojima, T, Tagaya, M, Kurihara, T, Kinoshita, M. Clinical significance of hypointensity in the motor cortex on T2-weighted images. Neurology. 1994 Jun;44(6):1181.Google Scholar
6. Cheung, G, Gawel, MJ, Cooper, PW, Farb, RI, Ang, LC. Amyotrophic lateral sclerosis: correlation of clinical and MR imaging findings. Radiology. 1995;194:26370.CrossRefGoogle ScholarPubMed
7. Hofmann, E, Ochs, G, Pelzl, A, Warmuth-Metz, M. The corticospinal tract in amyotrophic lateral sclerosis: a MRI study. Neuroradiology. 1998;40:7175.CrossRefGoogle ScholarPubMed
8. Oba, H, Araki, T, Ohtomo, K, et al. Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology. 1993; 189:8436.Google Scholar
9. Waragai, M. MRI and clinical features in amyotrophic lateral sclerosis. Neuroradiology. 1997 Dec;39(12):84751.Google ScholarPubMed
10. Hecht, MJ, Fellner, F, Fellner, C, Hilz, MJ, Neundörfer, B, Heuss, D. Hyperintense and hypointense MRI signals of the precentral gyrus and corticospinal tract in ALS: a follow-up examination including FLAIR images. J Neurol Sci. 2002 Jul 15;199(1–2): 5965.Google Scholar
11. Zhang, L, Ulug, AM, Zimmerman, RD, Lin, MT, Rubin, M, Beal, MF. The diagnostic utility of FLAIR imaging in clinically verified amyotrophic lateral sclerosis. J Magn Reson Imaging. 2003 May;17(5):5217.Google Scholar
12. Agosta, F, Chiò, A, Cosottini, M, et al. The present and the future of neuroimaging in amyotrophic lateral sclerosis. Am J Neuroradiol. 2010 Nov; 31(10):176977.Google Scholar
13. Imon, Y, Yamaguchi, S, Katayama, S, et al. A decrease in cerebral cortex intensity on T2-weighted with ageing images of normal subjects. Neuroradiology. 1998 Feb;40(2):7680.Google Scholar
14. Ngai, S, Tang, YM, Du, L, Stuckey, S. Hyperintensity of the precentral gyral subcortical white matter and hypointensity of the precentral gyrus on fluid-attenuated inversion recovery: variation with age and implications for the diagnosis of amyotrophic lateral sclerosis. Am J Neuroradiol. 2007 Feb;28 (2):2504.Google Scholar
15. Teriitehau, C, Adamsbaum, C, Merzoug, V, Kalifa, G, Tourbah, A, Aubourg, P. Subtle brain abnormalities in adrenomyeloneuropathy. J Radiol. 2007 Jul-Aug;88(7–8 Pt 1):95761.Google Scholar
16. Loes, DJ, Fatemi, A, Melhem, ER, et al. Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology. 2003 Aug 12;61(3):36974.Google Scholar
17. Kassubek, J, Bretschneider, V, Sperfeld, AD. Corticospinal tract MRI hyperintensity in X-linked Charcot-Marie-Tooth Disease. J Clin Neurosci. 2005 Jun;12(5):5889.Google Scholar
18. Bianco, F, Fattapposta, F, Locuratolo, N, et al. Reversible diffusion MRI abnormalities and transient mutism after liver transplantation. Neurology. 2004 Mar 23;62(6):9813.CrossRefGoogle ScholarPubMed
19. Mirowitz, S, Sartor, K, Gado, M, Torack, R. Focal signal-intensity variations in the posterior internal capsule: normal MR findings and distinction from pathologic findings. Radiology. 1989 Aug; 172(2):5359.Google Scholar
20. Hecht, MJ, Fellner, F, Fellner, C, Hilz, MJ, Heuss, D, Neundörfer, B. MRI-FLAIR images of the head show corticospinal tract alterations in ALS patients more frequently than T2-, T1- and proton-density-weighted images. J Neurol Sci. 2001 May 1;186 (1–2):3744.Google Scholar
21. Abe, K, Fujimura, H, Kobayashi, Y, Fujita, N, Yanagihara, T. Degeneration of the pyramidal tracts in patients with amyotrophic lateral sclerosis. A premortem and postmortem magnetic resonance imaging study. J Neuroimaging. 1997 Oct;7(4):20812.Google Scholar
22. Grosskreutz, J, Peschel, T, Unrath, A, Dengler, R, Ludolph, AC, Kassubek, J. Whole brain-based computerized neuroimaging in ALS and other motor neuron disorders. Amyotroph Lateral Scler. 2008 Aug;9(4):23848.Google Scholar
23. Kassubek, J, Ludolph, AC, Müller, HP. Neuroimaging of motor neuron diseases. Ther Adv Neurol Disord. 2012 Mar;5(2): 11927.Google Scholar
24. Turner, MR, Kiernan, MC, Leigh, PN, Talbot, K. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol. 2009 Jan;8(1): 94109.CrossRefGoogle ScholarPubMed
25. Turner, MR, Agosta, F, Bede, P, Govind, V, Lulé, D, Verstraete, E. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med. 2012 Jun;6(3):31937.Google Scholar