Hostname: page-component-5cf477f64f-bmd9x Total loading time: 0 Render date: 2025-04-02T21:38:42.109Z Has data issue: false hasContentIssue false

Do Physicians Intuitively Select Slow Progressors for Thrombectomy in the Extended Time Window?

Published online by Cambridge University Press:  12 March 2025

Salome L. Bosshart
Affiliation:
Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada University of Zurich, Zurich, Switzerland
Alexander Stebner
Affiliation:
Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada Department of Radiology, Cantonal Hospital Munsterlingen, Münsterlingen, Switzerland
Charlotte Zerna
Affiliation:
Department of Neurology, Städtisches Klinikum Dresden, Dresden, Germany
Emma Harrison
Affiliation:
Department of Neurology, Princess Alexandra Hospital, Brisbane, QL, Australia
Timothy Kleinig
Affiliation:
Department of Neurology, Royal Adelaide Hospital, Adelaide, Australia
Volker Puetz
Affiliation:
Department of Neurology, Technical University Dresden, Dresden, Germany
Daniel P.O. Kaiser
Affiliation:
Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Germany
Brett Graham
Affiliation:
Department of Neurology, Royal University Hospital of Saskatchewan, Saskatoon, Canada
Amy Y.X. Yu
Affiliation:
Department of Neurology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
Brian van Adel
Affiliation:
Division of Neurology, Neurosurgery and Diagnostic Imaging, Hamilton General Hospital, McMaster University, Hamilton, Canada
Jai Shankar
Affiliation:
Department of Neurology, University of Manitoba, Winnipeg, Canada
Ryan McTaggart
Affiliation:
Department of Radiology, Rhode Island Hospital, Providence, RI, USA
Vitor Pereira
Affiliation:
Department of Neurosurgery, St Michael’s Hospital, University of Toronto, Toronto, Canada
Don F. Frei
Affiliation:
Colorado Neurological Institute, Denver, CO, USA
Mayank Goyal
Affiliation:
Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada Department of Diagnostic Imaging, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
Michael D. Hill
Affiliation:
Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada Department of Diagnostic Imaging, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
Johanna M. Ospel*
Affiliation:
Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada Department of Diagnostic Imaging, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
*
Corresponding author: Johanna M Ospel; Email: [email protected]

Abstract:

Background:

In acute ischemic stroke, a longer time from onset to endovascular treatment (EVT) is associated with worse clinical outcome. We investigated the association of clinical outcome with time from last known well to arrival at the EVT hospital and time from hospital arrival to arterial access for anterior circulation large vessel occlusion patients treated > 6 hours from last known well.

Methods:

Retrospective analysis of the prospective, multicenter cohort study ESCAPE-LATE. Patients presenting > 6 hours after last known well with anterior circulation large vessel occlusion undergoing EVT were included. The primary outcome was the modified Rankin Scale (mRS) score at 90 days. Secondary outcomes were good (mRS 0–2) and poor clinical outcomes (mRS 5–6) at 90 days, as well as the National Institutes of Health Stroke Scale at 24 hours. Associations of time intervals with outcomes were assessed with univariable and multivariable logistic regression.

Results:

Two hundred patients were included in the analysis, of whom 85 (43%) were female. 90-day mRS was available for 141 patients. Of the 150 patients, 135 (90%) had moderate-to-good collaterals, and the median Alberta Stroke Program Early CT Score (ASPECTS) was 8 (IQR = 7–10). No association between ordinal mRS and time from last known well to arrival at the EVT hospital (odds ratio [OR] = 1.01, 95% CI = 1.00–1.02) or time from hospital arrival to arterial access (OR = -0.01, 95% CI = -0.02–0.00) was seen in adjusted regression models.

Conclusion:

No relationship was observed between pre-hospital or in-hospital workflow times and clinical outcomes. Baseline ASPECTS and collateral status were favorable in the majority of patients, suggesting that physicians may have chosen to predominantly treat slow progressors in the late time window, in whom prolonged workflow times have less impact on outcomes.

Résumé :

RÉSUMÉ :

Dans le cas d’une thrombectomie effectuée dans une fenêtre temporelle de traitement prolongée, les médecins sélectionnent-ils intuitivement des patients dont les AVC évoluent lentement ?

Contexte :

Dans le cas des AVC ischémique en phase aiguë, un délai plus long entre leur apparition et un traitement endovasculaire (TEV) est associé à une évolution défavorable de l’état clinique des patients. Nous avons donc étudié l’association entre cette évolution et, d’une part, le temps écoulé entre le moment où les patients ont été vus pour la dernière fois sans signes ni symptômes (last-known-well ou LKW) et l’arrivée à un hôpital offrant un TEV ; et, d’autre part, entre cette même évolution et le temps écoulé entre l’arrivée à l’hôpital et l’accès à des techniques vasculaires (arterial access) pour des patients victimes d’une occlusion des gros vaisseaux de la circulation antérieure et traités > 6 heures après avoir été vus sans signes ni symptômes.

Méthodes :

Conduire une analyse rétrospective de l’étude de cohorte prospective et multicentrique ESCAPE-LATE. Les patients se présentant > 6 heures après avoir été vus sans signes ni symptômes avec une occlusion des gros vaisseaux de la circulation antérieure et subissant un TEV ont été inclus. Le principal critère clinique d’évaluation était le score obtenu sur l’échelle modifiée de Rankin (EMR) au bout de 90 jours. Des résultats cliniques secondaires étaient considérés bons en fonction d’un score de 0-2 tandis que de mauvais résultats cliniques étaient associés à un score de 5-6 au bout de 90 jours, cet intervalle étant de 24 heures pour la National Institutes of Health Stroke Scale. Les associations entre ces intervalles et l’évolution de l’état clinique des patients ont été évaluées par régression logistique univariée et multivariée.

Résultats :

Au total, ce sont 200 patients qui ont été inclus dans cette analyse, dont 85 (43 %) étaient des femmes. Des scores sur l’EMR au bout de 90 jours étaient disponible pour 141 patients. Ajoutons que 135 patients sur 150 (90 %) ont donné à voir des scores de circulation collatérale allant de modérés à bons et que le score médian du Alberta Stroke Program Early CT Score (ASPECTS) était de 8 (EI = 7-10). Les modèles de régression ajustés n’ont par ailleurs révélé aucune association entre l’EMR ordinale et le temps écoulé entre la dernière mention d’un état de santé normal (ou LKW) et l’arrivée à un hôpital offrant un TEV (RC = 1,01 ; IC 95 % = 1,00-1,02) ou entre le temps écoulé entre l’arrivée à l’hôpital et l’accès à des techniques vasculaires (RC = −0,01 ; IC 95 % = −0,02-0,00).

Conclusion :

Aucune association n’a été observée entre les flux de travail préhospitaliers ou intra-hospitaliers et l’évolution de l’état clinique des patients. Les scores de base du ASPECTS et de circulation collatérale étaient favorables chez la majorité des patients, ce qui suggère que les médecins peuvent avoir choisi de traiter principalement des patients dont les AVC évoluent lentement (slow progressors) dans une fenêtre temporelle de traitement prolongée et chez qui des flux de travail prolongés ont moins d’impact sur l’évolution de leur état clinique.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goyal, M, Menon, BK, van Zwam, WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):17231731. doi: 10.1016/s0140-6736(16)00163-x.Google Scholar
Nogueira, RG, Jadhav, AP, Haussen, DC, et al. Thrombectomy 6 to 24 Hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):1121. doi: 10.1056/NEJMoa1706442.Google Scholar
Albers, GW, Marks, MP, Kemp, S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708718. doi: 10.1056/NEJMoa1713973.Google Scholar
Olthuis, SGH, Pirson, FAV, Pinckaers, FME, et al. Endovascular treatment versus no endovascular treatment after 6–24 h in patients with ischaemic stroke and collateral flow on CT angiography (MR CLEAN-LATE) in the Netherlands: a multicentre, open-label, blinded-endpoint, randomised, controlled, phase 3 trial. Lancet. 2023;401(10385):13711380. doi: 10.1016/s0140-6736(23)00575-5.Google Scholar
Sarraj, A, Hassan, AE, Abraham, MG, et al. Trial of endovascular thrombectomy for large ischemic strokes. N Engl J Med. 2023;388(14):12591271. doi: 10.1056/NEJMoa2214403.Google Scholar
Huo, X, Ma, G, Tong, X, et al. Trial of endovascular therapy for acute ischemic stroke with large infarct. N Engl J Med. 2023;388(14):12721283. doi: 10.1056/NEJMoa2213379.Google Scholar
Saver, JL, Goyal, M, van der Lugt, A, et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. Jama. 2016;316(12):12791288. doi: 10.1001/jama.2016.13647.Google Scholar
Menon, BK, Sajobi, TT, Zhang, Y, et al. Analysis of workflow and time to treatment on thrombectomy outcome in the endovascular treatment for small core and proximal occlusion ischemic stroke (ESCAPE) randomized, controlled trial. Circulation. 2016;133(23):22792286. doi: 10.1161/circulationaha.115.019983.Google Scholar
Kaesmacher, J, Maamari, B, Meinel, TR, et al. Effect of pre- and in-hospital delay on reperfusion in acute ischemic stroke mechanical thrombectomy. Stroke. 2020;51(10):29342942. doi: 10.1161/strokeaha.120.030208.Google Scholar
Rangaraju, S, Frankel, M, Jovin, TG. Prognostic value of the 24-hour neurological examination in anterior circulation ischemic stroke: a post hoc analysis of two randomized controlled stroke trials. Interv Neurol. 2016;4(3-4):120129. doi: 10.1159/000443801.Google Scholar
Goyal, M, Jadhav, AP, Bonafe, A, et al. Analysis of workflow and time to treatment and the effects on outcome in endovascular treatment of acute ischemic stroke: results from the SWIFT PRIME randomized controlled trial. Radiology. 2016;279(3):888897. doi: 10.1148/radiol.2016160204.Google Scholar
Liebeskind, DS. Collaterals in acute stroke: beyond the clot. Neuroimaging Clin N Am. 2005;15(3):553573. doi: 10.1016/j.nic.2005.08.012.Google Scholar
Liebeskind, DS, Jahan, R, Nogueira, RG, Zaidat, OO, Saver, JL. Impact of collaterals on successful revascularization in Solitaire FR with the intention for thrombectomy. Stroke. 2014;45(7):20362040. doi: 10.1161/strokeaha.114.004781.Google Scholar
Menon, BK, Qazi, E, Nambiar, V, et al. Differential effect of baseline computed tomographic angiography collaterals on clinical outcome in patients enrolled in the interventional management of stroke III trial. Stroke. 2015;46(5):12391244. doi: 10.1161/strokeaha.115.009009.Google Scholar
Goyal, M, Demchuk, AM, Menon, BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):10191030. doi: 10.1056/NEJMoa1414905.Google Scholar
Saver, JL, Goyal, M, Bonafe, A, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):22852295. doi: 10.1056/NEJMoa1415061.Google Scholar
Ospel, JM, Zerna, C, Harrison, E, et al. Cost-effectiveness of late endovascular thrombectomy vs. best medical management in a clinical trial setting and real-world setting. Can J Neurol Sci. 2024;51:18. doi: 10.1017/cjn.2024.19.Google Scholar
Supplementary material: File

Bosshart et al. supplementary material

Bosshart et al. supplementary material
Download Bosshart et al. supplementary material(File)
File 384 KB