Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T20:08:35.870Z Has data issue: false hasContentIssue false

When is a Distribution of Signs Locally Completable?

Published online by Cambridge University Press:  20 November 2018

F. Acquistapace
Affiliation:
Dipartimento di Matematica Université di Pisa Via F. Buonarroti 2 1-56127 Pisa Italy fax number: (39) 50 599524 e-mail: , [email protected]: , [email protected]
F. Broglia
Affiliation:
Dipartimento di Matematica Université di Pisa Via F. Buonarroti 2 1-56127 Pisa Italy fax number: (39) 50 599524 e-mail: , [email protected]: , [email protected]
E. Fortuna
Affiliation:
Dipartimento di Matematica Université di Pisa Via F. Buonarroti 2 1-56127 Pisa Italy fax number: (39) 50 599524 e-mail: , [email protected]: , [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let V be an irreducible nonsingular algebraic surface, YV be an algebraic curve and P a point of Y. Suppose a sign distribution is given locally in a neighbourhood of P on some connected components of VY. We give an algorithmic criterion to decide whether this sign distribution is induced by a regular function or not. As an application, this criterion enables one to decide whether two semialgebraic sets can be locally separated or not.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1994

References

[A-Bl] Acquistapace, F. and Broglia, F., Signatures and flatness, J. Reine Angew. Math. 425(1992), to appear.Google Scholar
[A-B2] Acquistapace, F. and Broglia, F., More about signatures and approximation, preprint.Google Scholar
[B-C-R] Bochnak, J.,Coste, M. and Roy, M-F., Géométrie algébrique réelle, Springer-Verlag, Berlin-Heidelberg-New York, 1987.Google Scholar
[B-K] Brieskorn, E. and Knôrrer, H., Plane algebraic curves, Birkhauser Verlag, Basel-Boston-Stuttgart, 1986.Google Scholar
[Bl] Brocker, L., Description of semialgebraic sets by few polynomials, Summer School at CIMPA, (1985), manuscript.Google Scholar
[B2] Brocker, L., On the separation of basic semialgebraic sets by polynomials, Manuscripta Math. 60(1988), 497508.Google Scholar
[B-T] Broglia, F. and Tognoli, A., Approximation of C°°-functions without changing their zero-set, Ann. Inst. Fourier (Grenoble) 39(1989), 611632.Google Scholar
[E-C] Enriques, F. and Chisini, O., Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, 3 Vols., Bologna, 1915 ,1918, 1924.Google Scholar
[F] Fortuna, E., Distributions de signes, Mathematika 38(1991), 5062.Google Scholar
[F-G] Fortuna, E. and Galbiati, M., Séparation de semi-algébriques, Geom. Dedicata 32(1989), 211227.Google Scholar
[M] Milnor, J., Singular points of complex hypersurfaces, Ann. of Math. Studies 61, Princeton University Press, Princeton, N.J., 1968.Google Scholar
[R] Ruiz, J. M., A note on a separation problem, Arch. Math. 43(1984), 422426.Google Scholar
[W] Walker, R. J., Algebraic curves, Springer-Verlag, New York-Heidelberg-Berlin, 1978.Google Scholar