Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T14:49:46.292Z Has data issue: false hasContentIssue false

Weighted Quadratic Norms and Legendre Polynomials

Published online by Cambridge University Press:  20 November 2018

I. I. Hirschman Jr.*
Affiliation:
Washington University, St. Louis
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Introduction. Let , n = 0, 1, … , be the normalized Legendre polynomials. If and if

then we write

.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1955

References

1. Copson, E. T., An introduction to the theory of functions of a complex variable (Oxford, 1935).Google Scholar
2. Hirschman, Jr., I. I., A note on orthogonal functions (to appear in Pacific J. Math.).Google Scholar
3. Hirschman, Jr., I. I., The decomposition of Walsh and Fourier series, No. 15 in the Memoirs of the American Mathematical Society.Google Scholar
4. Marcinkiewicz, J., Sur les multiplicateurs dès series de Fourier, Studia Math., 8 (1939), 7891.Google Scholar
5. Newman, Jerome and Rudin, Walter, Mean convergence of orthogonal series, Proc. Amer. Math. Soc, 3 (1952), 219222.Google Scholar
6. Pollard, H., The mean convergence of orthogonal series, Trans. Amer. Math. Soc, 6 (1947), 387403.Google Scholar
7. Rosskopf, M. F., Some inequalities for non-uniformly bounded orthonormal polynomials, Trans. Amer. Math. Soc, 86 (1934), 853867.Google Scholar
8. Szegö, G., Orthogonal Polynomials (New York, 1939).Google Scholar
9. Whittaker, E. T. and Watson, G. N., A Course of modern analysis (Cambridge, 1952).Google Scholar
10. Zygmund, A., Trigonometrical series (Warsaw-Lwow, 1935).Google Scholar
11. Hirschman, Jr., I. I., A convexity theorem for certain groups of transformations, J. d'Analyse Math., 2 (1952), 209218.Google Scholar