No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
This paper introduces two relations both weaker than isotopism which may hold between planar ternary rings. We will concentrate on the geometric consequences rather than the algebraic properties of these relations. It is well-known that every projective plane can be coordinatized by a planar ternary ring and every planar ternary ring coordinatizes a projective plane. If two planar ternary rings are isomorphic then their associated projective planes are isomorphic; however, the converse is not true. In fact, an algebraic bond which necessarily holds between the coordinatizing planar ternary rings of isomorphic projective planes has not been found. Such a bond must, of course, be weaker than isomorphism; furthermore, it must be weaker than isotopism. Here we show that it is even weaker than the two new relations introduced.This is significant because the weaker of our relations is, in a sense, the weakest possible algebraic relation which can hold between planar ternary rings which coordinatize isomorphic projective planes.