Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T00:28:59.978Z Has data issue: false hasContentIssue false

Vorticity Averages

Published online by Cambridge University Press:  20 November 2018

C. Truesdell*
Affiliation:
Applied Mathematics Branch, Mechanics Division, U.S. Naval Research Laboratory
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent studies of turbulent fluid motions have drawn attention to the transfer of vorticity. There have been some attempts to study turbulence by plane models, but these have been criticized justly for failing to reveal the true nature of a phenomenon which depends essentially on threedimensional convection. I have thought it worthwhile to eschew current conjectures regarding turbulence, turning in preference to the method of a master of the theory of vortices and applying it to the discovery of certain average properties of the continuous rotational motion of any medium whatever. This memoir therefore makes no attempt to deal with the problem of turbulence, but it is possible that the theorems presented here, being exact consequences of the kinematical equations, may nevertheless enjoy a certain relevance.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1951

References

[1] Beltrami, E., Sui principi fondamentale delta idrodinamica, Mem. Accad. Sci. Bologna, ser. 3, vol. 1 (1871), 431-476; vol. 2 (1872), 381-437, vol. 3 (1873), 345-407; vol. 5 (1874),443484 = Ricerche sulla cinematica deifluidi, Opere, vol. 2, 202-379. See §6.Google Scholar
[2] Berker, R., Sur certaines propriétés du rotationnel d'un champ vectoriel qui est nul sur la frontiére de son domaine de definition, Comptes Rendus Acad. Sci. Paris, vol. 228 (1949),16301632.Google Scholar
[3] Euler, L., Principes généraux du mouvement des flu'des, Hist. Acad. R. Berlin vol. 1755 (1757), 274315. See §§ X-XV.Google Scholar
[4] Föppl, A, Die Géométrie der Wirbelfelder, Leipzig (1897). See §§4, 32.Google Scholar
[5] Gibbs, J. W. and E. Wilson, B., Vector Analysis,New Haven (1902).Google Scholar
[6] Hamel, G., Zum Turbulenzproblem, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1911), 261270. See p. 266.Google Scholar
[7] Jaffé, G., Über den Transport von Vektorgrôssen,mit Anwendung auf Wirbelbewegung in reilbenden Flüssigkeiten, Phys. Zeitschr., vol. 22 (1922), 180183.Google Scholar
[8] J.|Kampé de Feriet, On a property of the Laplacian of a function in a two dimensional bounded domain, when the first derivatives of the function vanish on the boundary, Math. Mag., vol. 21 (1947), 7479.Google Scholar
[9] J.|Kampé de Feriet, Remarques sur les fonctions orthogonales à toute fonction harmonique dans un domaine plan, àpropos des équations du movement plan d'un fluide visqueux incompressible, Ann. Soc. Sci. Bruxelles, ser. I, vol. 62 (1948), 1118.Google Scholar
[10] Lagrange, J., Application de la méthode exposé dans le mémoire précédent à la solution de différents problémes de dynamique, Mise. Taurinensia, vol. 2, Part 2 (1760), 196-298 = Oeuvres, vol. 1, 365468. See Ch. XLII.Google Scholar
[11] Lamb, H., Note on a theorem in hydrodynamics, Messenger of Math., vol. 7 (1877), 4142.Google Scholar
[12] Lamb, H., A treatise on the Mathematical Theory of the Motion of Fluids, Cambridge (1879). See §136.Google Scholar
[13] Lamb, H., Hydrodynamics, 6th ed. (1932). See §153.Google Scholar
[14] Lichtenstein, L., Grundlagen der Hydromechanik, Berlin (1929). See Ch. 5, §16.Google Scholar
[15] Moreau, J.-J., Sur deux théorémes généraux de la dynamique d'un milieu incompressible illimité, C. R. Acad. Sci. Paris, vol. 226 (1948), 14201422.Google Scholar
[16] Moreau, J.-J., Sur la dynamique d'un écoulement rotationnel, C. R. Acad. Sci. Paris, vol. 229 (1949), 100102.Google Scholar
[17] Munk, M., On some vortex theorems of hydrodynamics, J. Aero. Sci., vol. 5 (1941), 9096.Google Scholar
[18] Poincaré, H., Théorie des Tourbillons, Paris (1893).Google Scholar
[19] Reynolds, O., The sub-mechanics of the universe, Papers, vol. 3 (1903), Cambridge. See §9.Google Scholar
[20] Spielrein, J., Lehrbuch der Vektorrechnung nach den Bedürfnissen in der technischen Mechanik und Elektrizitätslehre, Stuttgart (1916). See §29.Google Scholar
[21] Thomson, J.J., A Treatise on the Motion of Vortex Rings, London (1883). See §6.Google Scholar
[22] Thomson, W. (Lord Kelvin), Notes on hydrodynamics V: On the vis-viva of a liquid in motion,Camb. Dubl. Math. J. (1849) = Papers, vol. 1,107112. See §7.Google Scholar
[23] Truesdell, C., On the total vorticity of motion of a continuous medium, Phys. Rev., ser. 2, vol. 73 (1948), 510512.Google Scholar
[24] Truesdell, C., Généralisation de la formule de Cauchy et des théorémes de Helmholtz au mouvement d'un milieu continu quelconque, C. R. Acad. Sci. Paris, vol. 227 (1948), 757759.Google Scholar
[25] Truesdell, C., Deux formes de la transformation de Green, C. R. Acad. Sci. Paris, vol. 229 (1949), 11991200.Google Scholar
[26] Truesdell, C., A form of Green's transformation, Amer. J. Math., forthcoming. Google Scholar
[27] Weinstein, A., On the decomposition of a Hilbert space by its harmonic subspace, Amer. J. Math., vol. 63 (1941), 615618.Google Scholar
[28] Weyl, H., The method of orthogonal projection in potential theory, Duke Math. J., vol. 7 (1940), 411444.Google Scholar
[29] Zaremba, S., Le probléme biharmonique restreint, Ann. É cole Norm., ser. 3, vol. 26 (1909), 337404.Google Scholar
[30] Berker, R., Sur certaines propriété s du rotationnel dé un champ vectoriel qui est nul sur la frontiére de son domaine de définition, Bull. Sci Math., ser. 2, vol. 73 (1949), 163176.Google Scholar
[31] Synge, J. L., Note on the kinematics of plane viscous motion, Q. Appl. Math., vol. 8 (1950), 107108.Google Scholar
[32] Truesdell, C., Analogue trois-dimensionnel au théoréme de M. Synge concernant les champs vectoriels plans qui s'annulent sur une frontiére fermée, C. R. Acad. Sci. Paris, forthcoming. Google Scholar
[33] Truesdell, C., Deuxiéme caracterisation des champs vectoriels qui s'annulent sur une frontiérefermée, C. R. Acad. Sci. Paris, forthcoming. Google Scholar