1 Introduction
The independence number $\alpha (G)$ of graph G is the maximum size of independent sets in G, which is an important graph parameter in graph theory. The following is a celebrated upper bound given by Hoffman.
Theorem 1.1 [Reference Brouwer and Haemers5, Theorem 3.5.2]
Let G be a k-regular ( $k\neq 0$ ) graph with n vertices, and let $\tau $ be the minimum adjacency eigenvalue of G. Then
If an independent set C meets this bound, then every vertex not in C is adjacent to exactly $|\tau |$ vertices of C.
The upper bound in Theorem 1.1 is often called Hoffman (ratio) bound for $\alpha (G)$ . Haemers generalized the Hoffman bound to the general case.
Theorem 1.2 [Reference Haemers17, p. 17]
Let G be a graph with minimum degree $\delta $ , and let $\lambda $ and $\tau $ be the maximum and the minimum adjacency eigenvalue of G, respectively. Then
There are many Hoffman-type ratio bounds, which are useful in graph theory, coding theory, and extremal combinatorics [Reference Delsarte8–Reference Ellis, Friedgut and Pilpel10, Reference Frankl and Wilson12, Reference Friedgut13]. Some generalized Hoffman ratio bounds involving adjacency eigenvalues, Laplacian eigenvalues, and normalized Laplacian eigenvalues of graphs can be found in [Reference Godsil and Newman14, Reference Haemers17, Reference Harant and Richter18, Reference Lu, Liu and Tian20].
For a graph $G=(V,E)$ , let $G^k$ denote the graph whose vertex set is $V^k$ , in which two vertices $u_1\ldots u_k$ and $v_1\ldots v_k$ are adjacent if and only if for each $i\in \{1,\ldots ,k\}$ either $u_i=v_i$ or $\{u_i,v_i\}\in E$ (see [Reference Alon1]). The Shannon capacity [Reference Brouwer and Haemers5, Reference Shannon23] of G is defined as
and represents the number of distinct messages per use the channel can communicate with no error while used many times [Reference Alon1]. It is difficult to compute $\Theta (G)$ for a general graph G, we do not even know the Shannon capacity of the cycle $C_7$ (see [Reference Bohman4, Reference Polak and Schrijver21]).
The Lovász theta function $\vartheta (G)$ is an upper bound for $\alpha (G)$ introduced in [Reference Lovász19], which is a powerful tool for studying the Shannon capacity of graphs. Lovász [Reference Lovász19] proved that $\alpha (G)\leq \Theta (G)\leq \vartheta (G)$ , and posed the problem of finding graphs with $\Theta (G)=\vartheta (G)$ (see Problem 1 in [Reference Lovász19]). The Schrijver theta function $\vartheta '(G)$ is a smaller upper bound for $\alpha (G)$ . Schrijver [Reference Schrijver22] proved that $\alpha (G)\leq \vartheta '(G)\leq \vartheta (G)$ . By considering the relation between $\alpha (G)$ and the rank of matrices associated with G, Haemers [Reference Haemers16] proved that $\Theta (G)$ is at most the minimum rank of a class of graph matrices.
Generalized inverses of graph matrices have important applications in random walks on graphs [Reference Chung and Yau6] and the sparsification of graphs [Reference Spielman24]. This paper uses generalized inverses methods to study $\alpha (G)$ , $\Theta (G)$ , $\vartheta (G),$ and $\vartheta '(G)$ , and gives bounds which unify the Lovász theta function, Schrijver theta function, and Hoffman-type bounds. Based on the generalized inverses method, we obtain simple structural and spectral conditions to determine $\alpha (G)$ , $\Theta (G)$ , $\vartheta (G),$ and a maximum independent set in G. Our conditions can also be used to find graphs with $\Theta (G)=\vartheta (G)$ , which is a partial answer to the problem posed by Lovász.
The paper is organized as follows: In Section 2, we introduce some auxiliary lemmas. In Section 3, we give bounds for the sizes of independent sets and the independence number of graphs by using generalized inverses and eigenvalues of graph matrices. In Sections 4–6, we show that our bounds unify the Lovász theta function, Schrijver theta function, and Hoffman-type bounds in [Reference Brouwer and Haemers5, Reference Godsil and Newman14, Reference Harant and Richter18, Reference Lu, Liu and Tian20], and obtain the necessary and sufficient conditions of graphs attaining the bounds. In Section 7, we give some simple structural and spectral conditions for determining a maximum independent set, the independence number, the Shannon capacity, and the Lovász theta function of a graph. Some concluding remarks are given in Section 8.
2 Preliminaries
For a real square matrix M, the group inverse of M, denoted by $M^\#$ , is the matrix X such that $MXM=M,~XMX=X$ , and $MX=XM$ . It is known [Reference Ben-Israel and Greville2, p. 156] that $M^\#$ exists if and only if $\mathrm {rank}(M)=\mathrm {rank}(M^2)$ . If $M^\#$ exists, then $M^\#$ is unique.
For a positive semidefinite real matrix M, there exists an orthogonal matrix U such that
where $\mathrm {diag}(\lambda _1,\ldots ,\lambda _n)$ denotes a diagonal matrix with nonnegative diagonal entries $\lambda _1,\ldots ,\lambda _n$ . We set $M^{\frac {1}{2}}=U\mathrm { diag}(\lambda _1^{\frac {1}{2}},\ldots ,\lambda _n^{\frac {1}{2}})U^\top $ and $M^{-\frac {1}{2}}=U\mathrm {diag}((\lambda _1^+)^{\frac {1}{2}},\ldots , (\lambda _n^+)^{\frac {1}{2}})U^\top $ , where $\lambda _i^+=\lambda _i^{-1}$ if $\lambda _i>0$ , and $\lambda _i^+=0$ if $\lambda _i=0$ . Then
Lemma 2.1 [Reference Ben-Israel and Greville2, pp. 162–163]
Let M be a square matrix such that $M^\#$ exists, and let $\lambda \neq 0$ be an eigenvalue of M with an eigenvector x. Then
For a real matrix A, the Moore–Penrose inverse of A is the real matrix X such that $AXA=A$ , $XAX=X$ , $(AX)^\top =AX,$ and $(XA)^\top =XA$ . Let $A^+$ denote the Moore–Penrose inverse of A. It is well known that $A^+$ exists and is unique.
Let $R(M)=\{x:x=My,y\in \mathbb {R}^n\}$ denote the range of an $m\times n$ real matrix M.
Lemma 2.2 [Reference Ben-Israel and Greville2, pp. 43, 49]
Let A be a real matrix. Then
Lemma 2.3 Let A be an $n\times m$ real matrix, and let x be a unit real vector of dimension n. Then
with equality if and only if $x\in R(A)$ .
Proof It is known [Reference Ben-Israel and Greville2] that $AA^+$ is a real symmetric idempotent matrix. So each eigenvalue of $AA^+$ is $0$ or $1$ . For a unit real vector x, we have $x^\top AA^+x\leq 1$ , with equality if and only if $x\in R(AA^+)$ . By Lemma 2.2, $x\in R(AA^+)$ is equivalent to $x\in R(A)$ .
We now introduce the Lovász theta function defined in [Reference Lovász19]. An orthonormal representation of an n-vertex graph G is a set $\{u_1,\ldots ,u_n\}$ of unit real vectors such that $u_i^\top u_j=0$ if i and j are two nonadjacent vertices in G. The value of an orthonormal representation $\{u_1,\ldots ,u_n\}$ is defined to be
where c ranges over all unit real vectors. The Lovász theta function $\vartheta (G)$ is the minimum value of all orthonormal representations of G.
Let $(M)_{ij}$ denote the $(i,j)$ -entry of a matrix M, and let $\lambda _1(A)$ denote the largest eigenvalue of a real symmetric matrix A. The independence number $\alpha (G)$ , the Shannon capacity $\Theta (G),$ and the Lovász theta function $\vartheta (G)$ have the following relations.
Lemma 2.4 [Reference Lovász19]
For any graph G, we have
where A ranges over all real symmetric matrices indexed by vertices of G such that $(A)_{ij}=1$ when $i=j$ or $i,j$ are two nonadjacent vertices.
For a graph G, its Schrijver theta function $\vartheta '(G)$ is defined as [Reference Schrijver22]
where A ranges over all real symmetric matrices indexed by vertices of G such that $(A)_{ij}\geq 1$ when $i=j$ or $i,j$ are two nonadjacent vertices.
Lemma 2.5 [Reference Schrijver22]
For any graph G, we have
For an n-vertex graph G, the adjacency matrix A of G is an $n\times n$ symmetric matrix with entries
where $E(G)$ denotes the edge set of G. Eigenvalues of the adjacency matrix of G are called adjacency eigenvalues of G. The largest adjacency eigenvalue of a graph has the following upper bound.
The following lemma will be used later in the proof of Example 4.3.
Lemma 2.6 [Reference Berman and Zhang3]
Let G be a graph with adjacency matrix A. Then
where $d_u$ denotes the degree of a vertex u.
3 Bounds for independent sets and independence number
Let $A[S]$ denote the principal submatrix of a square matrix A determined by the rows and columns whose index set is S. A real vector $x=(x_1,\ldots ,x_n)^\top $ is called total nonzero if $x_i\neq 0$ for $i=1,\ldots ,n$ .
For an n-vertex graph G, let $V(G)$ denote the vertex set of G, and let $\mathcal {P}(G)$ denote the set of real matrix-vector pairs $(M,x)$ such that:
(a) M is a positive semidefinite $n\times n$ matrix indexed by vertices of G.
(b) $x=(x_1,\ldots ,x_n)^\top \in R(M)$ is total nonzero and $(M)_{ij}x_ix_j\leq 0$ if $i,j$ are two nonadjacent distinct vertices.
For $(M,x)\in \mathcal {P}(G)$ and vertex subset $T\subseteq V(G)$ , let $F(M,x)$ and $F_T(M,x)$ denote the following functions:
In [Reference Godsil and Newman14], Godsil and Newman gave bounds on the size of an independent set by using positive semidefinite graph matrices. Motivated by the ideas of Godsil and Newman, we give the following bounds in terms of generalized inverses of positive semidefinite graph matrices.
Theorem 3.1 Let $(M,x)\in \mathcal {P}(G)$ be a matrix-vector pair associated with an n-vertex graph G. Then the following statements hold:
(1) For any independent set S of G, we have
with equality if and only if $M[S]$ is diagonal and there exists a constant c such that
(2) The independence number $\alpha (G)$ satisfies
with equality if and only if G has an independent set C such that $M[C]$ is diagonal and
Moreover, if an independent set C satisfies the above conditions, then
(3) Suppose that $\frac {(M)_{11}}{x_1^2}\geq \cdots \geq \frac {(M)_{nn}}{x_n^2}$ are arranged in a decreasing order. If $\alpha (G)\geq t$ for some positive integer t, then
where $T=\{1,\ldots ,t\}$ .
Proof Since $M^{\frac {1}{2}}M^{-\frac {1}{2}}M=M$ and $x\in R(M)$ , we have
For any independent set S of G, let $y=(y_1,\ldots ,y_n)^\top $ be the vector such that
By the Cauchy–Schwarz inequality, we have
Since $(M)_{ij}x_ix_j\leq 0$ when $i,j$ are two nonadjacent vertices, we get
with equality if and only if $M[S]$ is diagonal and there exists a constant c such that $M^{\frac {1}{2}}y=cM^{-\frac {1}{2}}x$ , that is, $My=cx$ (because $M^{\frac {1}{2}}M^{-\frac {1}{2}}x=x$ ). When $M[S]$ is diagonal, $My=cx$ is equivalent to
So part (1) holds.
Notice that $|S|\leq F_S(M,x)\leq F(M,x)$ for any independent set S of G. Hence
If the equality holds, then G has an independent set C such that $M[C]$ is diagonal and
If an independent set C satisfies the above conditions, then
where $z=(z_1,\ldots ,z_n)^\top $ is the vector such that
Since $\alpha (G)\leq F(M,x)$ , we have
So part (2) holds.
Suppose that $\frac {(M)_{11}}{x_1^2}\geq \cdots \geq \frac {(M)_{nn}}{x_n^2}$ are arranged in a decreasing order. Let C be an independent set such that $|C|=\alpha (G)$ . If $\alpha (G)\geq t$ , then
So part (3) holds.
Remark 3.2 For a graph G, let M be a positive definite matrix indexed by vertices of G such that $(M)_{ij}=0$ if $i,j$ are two nonadjacent distinct vertices. Then $M^\#=M^{-1}$ and $(M,x)\in \mathcal {P}(G)$ for any real vector x. By part (2) of Theorem 3.1, we have
for any total nonzero vector x.
The $\{1\}$ -inverse of M is a matrix X such that $MXM=M$ . If M is singular, then it has infinite $\{1\}$ -inverses (see [2, page 41]).
Remark 3.3 Let M be a real symmetric matrix. Since $MM^\#M=MM^{(1)}M=M$ for any $\{1\}$ -inverse $M^{(1)}$ of M, we have $x^\top M^\#x=x^\top M^{(1)}x$ for any $x\in R(M)$ . Hence, the upper bounds given in Theorem 3.1 can be obtained from any $\{1\}$ -inverse of M.
The signless Laplacian matrix of a graph G is defined as $D+A$ , where D is the diagonal matrix of vertex degrees of G, A is the adjacency matrix of G. The subdivision graph of G, denoted by $S(G)$ , is a graph obtained from G by replacing each edge of G by a path of length $2$ .
We can find concrete examples such that an upper bound derived from Theorem 3.1 is smaller than the Hoffman bound given in Theorem 1.2.
Example 3.4 Let G be a nonregular graph with n vertices, m edges, and minimum degree $\delta \geq 2$ . Then there exists $(M,x)\in \mathcal {P}(S(G))$ such that
where $\lambda $ is the maximum adjacency eigenvalue of $S(G)$ .
Proof The signless Laplacian matrix of $S(G)$ can be written as $M=\begin {pmatrix}2I&B^\top \\B&D\end {pmatrix}$ , where B is the vertex-edge incidence matrix of G, D is the diagonal matrix of vertex degrees of G. Let $x=\begin {pmatrix}2I&B^\top \\B&D\end {pmatrix}\begin {pmatrix}e\\0\end {pmatrix}=\begin {pmatrix}2e\\y\end {pmatrix}$ , where e is the all-ones vector, y is the vector of vertex degrees of G. Let C be the independent set in $S(G)$ corresponding to the edge set of G, then $(M,x)\in \mathcal {P}(S(G))$ and C satisfy the conditions given in part (2) of Theorem 3.1. By part (2) of Theorem 3.1, we get
Let $\lambda $ be the maximum adjacency eigenvalue of $S(G)$ , then $-\lambda $ is the minimum adjacency eigenvalue of $S(G)$ (because $S(G)$ is bipartite). By Theorem 1.2, we have
We next show that the inequality is strict. It is known that $\lambda ^2$ is the maximum eigenvalue of the signless Laplacian matrix of G, and $\lambda ^2\geq \frac {4m}{n}$ , with equality if and only if G is regular (see [Reference Cvetković, Rowlinson and Simić7, Theorems 2.4.4 and 7.8.6]). Since G is nonregular, we have $\lambda ^2>\frac {4m}{n}$ , that is $m<\frac {(m+n)\lambda ^2}{4+\lambda ^2}$ .
For a connected graph G, if M be a nonnegative matrix indexed by $V(G)$ such that $(M)_{ij}>0$ if and only if $i,j$ are two adjacent vertices, then M is irreducible. By the Perron–Frobenius Theorem, the spectral radius $\rho $ of M is a positive eigenvalue of M, and there exists unique positive unit eigenvector associated with $\rho $ . The following eigenvalue bound follows from Theorem 3.1.
Corollary 3.5 Let M be a positive semidefinite nonnegative matrix associated with a connected graph G, and $(M)_{ij}>0$ if and only if $i,j$ are two adjacent vertices. Let $\rho $ be the spectral radius of M, and let x be the corresponding positive unit eigenvector. Then
Proof Since $Mx=\rho x$ , we have $(M,x)\in \mathcal {P}(G)$ . By Lemma 2.1, we get
By part (2) of Theorem 3.1, we get
The Laplacian matrix of a graph G is defined as $L=D-A$ , where D is the diagonal matrix of vertex degrees of G, A is the adjacency matrix of G. It is well known that L is positive semidefinite. The following result follows from Theorem 3.1.
Corollary 3.6 Let G be a connected graph with Laplacian matrix L. For any total nonzero vector x satisfying $\sum _{u\in V(G)}x_u=0$ , we have
Proof Since G is connected, the null space of L has dimension one. Since $Le=0$ for the all-ones vector e, we have $x\in R(L)$ for any vector x satisfying $e^\top x=\sum _{u\in V(G)} x_u=0$ . By part (2) of Theorem 3.1, we get
4 Lovász theta function and Shannon capacity
For a graph G, let $\mathcal {M}(G)$ denote the set of real matrix-vector pairs $(M,x)$ such that:
(a) M is a positive semidefinite matrix indexed by vertices of G such that $(M)_{ij}=0$ if $i,j$ are two nonadjacent distinct vertices.
(b) $x\in R(M)$ is a total nonzero vector.
Since $\mathcal {M}(G)$ is a subset of $\mathcal {P}(G)$ , the notations $F(M,x)$ and $F_T(M,x)$ defined in Section 3 can be used for $(M,x)\in \mathcal {M}(G)$ directly.
In the following theorem, we show that the Lovász theta function $\vartheta (G)$ is a special upper bound given in Theorem 3.1, and obtain the necessary and sufficient conditions of graphs satisfying $\alpha (G)=\vartheta (G)$ .
Theorem 4.1 For any graph G, we have
with equality if and only if there exist $(M,x)\in \mathcal {M}(G)$ and an independent set C satisfying the conditions given in part (2) of Theorem 3.1.
Proof By Theorem 3.1, we have
with equality if and only if there exist $(M,x)\in \mathcal {M}(G)$ and an independent set C satisfying the conditions in part (2) of Theorem 3.1. We need to prove that the minimum value equals to $\vartheta (G)$ .
We first prove that the minimum value does not exceed $\vartheta (G)$ . Let $c,u_1,\ldots ,u_n$ be unit real vectors such that $\{u_1,\ldots ,u_n\}$ is an orthonormal representation of G and
Let U be the matrix whose ith column is $u_i$ , then each diagonal entry of $U^\top U$ is $1$ . Take $z=U^\top c$ , then $(U^\top U,z)\in \mathcal {M}(G)$ and
By Lemmas 2.2 and 2.3, we have
So we have
We turn to prove that $\min _{(M,x)\in \mathcal {M}(G)}F(M,x)$ is at least $\vartheta (G)$ . There exists $(M_0,y)\in \mathcal {M}(G)$ such that
Since $M_0$ is positive semidefinite, there exists real matrix B such that $M_0=B^\top B$ . Since $y\in R(M_0)$ , we can choose y such that $y=B^\top c$ for a unit real vector $c\in R(B)$ . Let $b_i$ be the ith column of B. By Lemmas 2.2 and 2.3, we have
We next prove that $F(M_0,y)\geq \vartheta (G)$ by using the method similar with proof of [Reference Lovász19, Theorem 3]. Let $A=(a_{ij})_{n\times n}$ be the matrix with entries
By Lemma 2.4, we get
We set
then
Hence, $\beta I-A$ (I is the identity matrix) is positive semidefinite, that is,
The following conclusion comes from Theorems 3.1 and 4.1 and Lemma 2.4.
Theorem 4.2 Let $(M,x)\in \mathcal {M}(G)$ be a matrix-vector pair for graph G. If G has an independent set C such that $(M,x)$ and C satisfy the conditions given in part (2) of Theorem 3.1, then
A bipartite graph G is called semiregular with parameters $(n_1,n_2,r_1,r_2)$ if $V(G)$ has a bipartition $V(G)=V_1\cup V_2$ such that $|V_1|=n_1,|V_2|=n_2$ and vertices in the same color class have the same degree ( $n_i$ vertices of degree $r_i$ , $i=1,2$ ).
Let I denote the identity matrix. The following are some examples for Theorem 4.2.
Example 4.3 Let G be a graph with a spanning subgraph H, and let H be a semiregular bipartite graph with parameters $(n_1,n_2,r_1,r_2)$ ( $n_1r_1=n_2r_2>0,n_1\leq n_2$ ). If the independent set with $n_2$ vertices in H is also an independent set in G, then
Proof The adjacency matrix of H can be written as $A=\begin {pmatrix}0&B^\top \\B&0\end {pmatrix}$ , and each row (column) sum of $B\in \mathbb {R}^{n_1\times n_2}$ is $r_1$ ( $r_2$ ). By Lemma 2.6, we have $\lambda _1(A)\leq \sqrt {r_1r_2}$ . Then
Let $M=\begin {pmatrix}r_1I&B^\top \\B&r_2I\end {pmatrix}$ , then the all-ones vector $e\in R(M)$ because $Me=(r_1+r_2)e$ . Since the Schur complement
is positive semidefinite, M is positive semidefinite. Hence $(M,e)\in \mathcal {M}(G)$ . Let C be the independent set with $n_2$ vertices in H, which is also an independent set in G. Since $(M,e)$ and C satisfy the conditions given in part (2) of Theorem 3.1, then by Theorem 4.2, we have
For two disjoint graphs $G_1$ and $G_2$ , let $G_1\vee G_2$ denote the graph obtained from the union of $G_1$ and $G_2$ by joining each vertex of $G_1$ to each vertex of $G_2$ . Let $\overline {G}$ denote the complement of a graph G.
Example 4.4 Let G be an n-vertex graph with minimum degree $\delta $ . For any integer $s\geq n-\delta $ , we have
where $K_s$ is the complete graph with s vertices.
Proof The adjacency matrix of $G\vee \overline {K_s}$ can be written as $\begin {pmatrix}0&J_{s\times n}\\J_{s\times n}^\top &A\end {pmatrix}$ , where A is the adjacency matrix of G, $J_{s\times n}$ is the $s\times n$ all-ones matrix. Let L be the Laplacian matrix of G, and let $M=\begin {pmatrix}sI&J_{s\times n}\\J_{s\times n}^\top &nI-L\end {pmatrix}$ . Then the all-ones vector $e\in R(M)$ because $Me=(s+n)e$ . Since the Schur complement
equals to the Laplacian matrix of $\overline {G}$ (which is positive semidefinite), M is positive semidefinite. Hence $(M,e)\in \mathcal {M}(G)$ . Let C be the independent set of size s in $G\vee \overline {K_s}$ . Since $(M,e)$ and C satisfy the conditions given in part (2) of Theorem 3.1, then by Theorem 4.2, we have
Let $e=(1,\ldots ,1)^\top $ denote the all-ones vector.
Corollary 4.5 Let G be a graph with adjacency matrix A and $A+\lambda I$ is positive definite for some $\lambda>0$ . Then
with equality if and only if there exists an independent set C such that every vertex not in C is adjacent to exactly $\lambda $ vertices of C. Moreover, if an independent set C satisfies the above condition, then
Proof Since $A+\lambda I$ is positive definite, we have $(A+\lambda I,e)\in \mathcal {M}(G)$ and $F(A+\lambda I,e)=\lambda e^\top (A+\lambda I)^{-1}e$ . The conclusions follow from Theorems 3.1 and 4.2.
The following is an example for Corollary 4.5.
Example 4.6 For the path $P_{2k+1}$ with $2k+1$ vertices, let C be the independent set in $P_{2k+1}$ with $k+1$ vertices. Then every vertex not in C is adjacent to exactly two vertices of C. By Corollary 4.5, we have
where A is the adjacency matrix of $P_{2k+1}$ .
A clique covering of G is a set $\varepsilon =\{Q_1,\ldots ,Q_r\}$ of cliques in G that cover all edges of G, that is, each edge of G belongs to at least one $Q_i$ . For a clique covering $\varepsilon $ and a vertex u of G, the $\varepsilon $ -degree of u is the number of cliques in $\varepsilon $ containing u, denoted by $d_u^\varepsilon $ . The clique covering matrix $A_\varepsilon $ is the $n\times n$ symmetric matrix with entries
where $w_{ij}$ is the number of cliques in $\varepsilon $ containing the edge $\{i,j\}$ .
Theorem 4.7 Let G be a graph without isolated vertices. For any clique covering $\varepsilon $ of G, we have
where x is a vector satisfying $x_u=d_u^\varepsilon $ . The equality holds if and only if there exists an independent set C such that $d_v^\varepsilon =\min _{u\in V(G)}d_u^\varepsilon $ for each $v\in C$ , and $|C\cap Q|=1$ for each $Q\in \varepsilon $ . Moreover, if an independent set C satisfies the above conditions, then
Proof For a clique covering $\varepsilon =\{Q_1,\ldots ,Q_r\}$ of G, the corresponding vertex-clique incidence matrix B is a $|V(G)|\times r$ matrix with entries
Then $BB^\top =A_\varepsilon $ . Notice that $x=Be\in R(B)=R(A_\varepsilon )$ , so $(A_\varepsilon ,x)\in \mathcal {M}(G)$ . The conclusions follow from Theorems 3.1 and 4.2.
The following is an example for Theorem 4.7.
Example 4.8 The graph G in Figure 1 has a clique covering $\varepsilon =\{Q_1,Q_2,Q_3\}$ , where $Q_1=\{1,2,3\},Q_2=\{2,4,5\},Q_3=\{3,5,6\}$ . Then G has $\varepsilon $ -degrees $d_1^\varepsilon =1$ , $d_2^\varepsilon =2$ , $d_3^\varepsilon =2$ , $d_4^\varepsilon =1$ , $d_5^\varepsilon =2$ , $d_6^\varepsilon =1$ (see [Reference Zhou and Bu25]). The independent set $C=\{1,4,6\}$ satisfies the conditions in Theorem 4.7. So we have
Let $m(H)$ denote the matching number of a hypergraph H. The intersection graph $\Omega (H)$ of H has vertex set $E(H)$ , and two vertices $f_1,f_2$ of $\Omega (H)$ are adjacent if and only if $f_1\cap f_2\neq \emptyset $ . Clearly, we have $m(H)=\alpha (\Omega (H))$ . The vertex-edge incidence matrix B of H is a $|V(H)|\times |E(H)|$ matrix with entries
We say that H is k-uniform if each edge of H has exactly k vertices.
Theorem 4.9 Let H be a k-uniform hypergraph without isolated vertices, and let B be the vertex-edge incidence matrix of H. Then
with equality if and only if H has a perfect matching. If H has a perfect matching, then
5 Schrijver theta function
In the following theorem, we show that the Schrijver theta function $\vartheta (G)$ is the minimum upper bound given in part (2) of Theorem 3.1, and obtain the necessary and sufficient conditions of graphs satisfying $\alpha (G)=\vartheta '(G)$ .
Theorem 5.1 For any graph G, we have
with equality if and only if there exist $(M,x)\in \mathcal {P}(G)$ and an independent set C satisfying the conditions given in part (2) of Theorem 3.1.
Proof By Theorem 3.1, we have
with equality if and only if there exist $(M,x)\in \mathcal {P}(G)$ and an independent set C satisfying the conditions given in part (2) of Theorem 3.1. We will prove that the minimum value equals to $\vartheta '(G)$ by using the method similar with proof of [Reference Lovász19, Theorem 3].
We first prove that the minimum value does not exceed $\vartheta '(G)$ . Let $A=(a_{ij})_{n\times n}$ be the real symmetric matrix indexed by vertices of G such that $\lambda _1(A)=\vartheta '(G)$ , and $a_{ij}\geq 1$ when $i=j$ or $i,j$ are two nonadjacent vertices. Then $\vartheta '(G)I-A$ is positive semidefinite. So there exists real matrix T such that
and the rank of T is smaller than the number of rows of T. Let c be a unit real vector such that $c^\top T=0$ . Suppose that $t_i$ is the ith column of T, then
where $\delta _{ij}=1$ if $i=j$ , and $\delta _{ij}=0$ if $i\neq j$ . We set
and let U be the matrix whose ith column is $u_i$ . Then
Take $z=U^\top c$ , then $z_i=c^\top u_i=\vartheta '(G)^{-\frac {1}{2}}$ ( $i=1,\ldots ,n$ ) and $(U^\top U,z)\in \mathcal {P}(G)$ . By Lemmas 2.2 and 2.3, we have
So we have
We next prove that $\min _{(M,x)\in \mathcal {P}(G)}F(M,x)$ is at least $\vartheta '(G)$ . There exists $(M_0,y)\in \mathcal {P}(G)$ such that
Since $M_0$ is positive semidefinite, there exists matrix B such that $M_0=B^\top B$ . Since $y\in R(M_0)$ , we can choose y such that $y=B^\top c$ for a unit real vector $c\in R(B)$ . Let $b_i$ be the ith column of B. By Lemmas 2.2 and 2.3, we have
Let $A=(a_{ij})_{n\times n}$ be the matrix with entries
Since $(M_0)_{ij}y_iy_j\leq 0$ for nonadjacent vertices $i,j$ , we have $a_{ij}\geq 1$ when $i=j$ or $i,j$ are two nonadjacent vertices. By the definition of $\vartheta '(G)$ , we have
We set
then
Hence, $\beta I-A$ is positive semidefinite, that is,
The following is an example for a graph G satisfying $\alpha (G)=\vartheta '(G)<\vartheta (G)$ (see [Reference Schrijver22]).
Example 5.2 [Reference Schrijver22]
Let G be a graph with vertex set $\{0,1\}^6$ , and two vertices are adjacent if and only if their Hamming distance is at most $3$ . Then $\{000000,001111, 110011,111100\}$ is an independent set of G. It is known that $4=\vartheta '(G)<\vartheta (G)=16/3$ .
By Theorems 3.1 and 5.1 and Lemma 2.5, we can get the following conclusion.
Theorem 5.3 Let $(M,x)\in \mathcal {P}(G)$ be a matrix-vector pair for graph G. If G has an independent set C such that $(M,x)$ and C satisfy the conditions given in part (2) of Theorem 3.1, then
6 Hoffman-type bounds
In this section, we show that the Hoffman-type bounds in [Reference Brouwer and Haemers5, Reference Godsil and Newman14, Reference Harant and Richter18, Reference Lu, Liu and Tian20] are special cases of Theorem 3.1.
By Theorem 3.1, we can get the following classical Hoffman bound, and obtain the necessary and sufficient conditions of graphs attaining the Hoffman bound. The necessary condition of the equality case given in Theorem 1.1 is indeed a sufficient condition.
Corollary 6.1 Let G be a k-regular ( $k\neq 0$ ) graph with n vertices, and let $\tau $ be the minimum adjacency eigenvalue of G. Then
with equality if and only if there exists an independent set C such that every vertex not in C is adjacent to exactly $|\tau |$ vertices of C. Moreover, if an independent set C satisfies the above condition, then
Proof Since G is k-regular, we have $(A-\tau I,e)\in \mathcal {M}(G)$ , where A is the adjacency matrix of G. By Lemma 2.1, we get
Let $d_u$ denote the degree of a vertex u, and let $\overline {d}_S=|S|^{-1}\sum _{u\in S}d_u$ denote the average degree in a vertex set S. The largest Laplacian eigenvalue of a graph G is the largest eigenvalue of the Laplacian matrix of G.
The following bound for independent sets was given in Theorem 4.3 of [Reference Godsil and Newman14] without sufficient condition of the equality case.
Corollary 6.2 [Reference Godsil and Newman14]
Let G be an n-vertex graph with the largest Laplacian eigenvalue $\mu>0$ . For any independent set S of G, we have
with equality if and only if there exists a constant d such that $d_u=d$ for each $u\in S$ , and every vertex not in S is adjacent to exactly $\mu -d$ vertices of S.
Proof Let L be the Laplacian matrix of G. Since $(\mu I-L)e=\mu e$ , we have $(\mu I-L,e)\in \mathcal {M}(G)$ . By Lemma 2.1, we get
The conclusion follows from part (1) of Theorem 3.1.
The following bound was given independently in [Reference Lu, Liu and Tian20] and [Reference Godsil and Newman14], and the necessary condition of the equality case was given in Theorem 3.2 of [Reference Lu, Liu and Tian20].
Corollary 6.3 [Reference Godsil and Newman14, Reference Lu, Liu and Tian20]
Let G be an n-vertex graph with the largest Laplacian eigenvalue $\mu>0$ and the minimum degree $\delta $ . Then
with equality if and only if there exists an independent set C such that $d_u=\delta $ for each $u\in C$ , and every vertex not in C is adjacent to exactly $\mu -\delta $ vertices of C. Moreover, if an independent set C satisfies the above conditions, then
Proof Let L be the Laplacian matrix of G. Since $(\mu I-L)e=\mu e$ , we have $(\mu I-L,e)\in \mathcal {M}(G)$ . By Lemma 2.1, we get
For a graph G without isolated vertices, the normalized Laplacian matrix $\mathcal {L}$ of G is the $n\times n$ symmetric matrix with entries
The largest normalized Laplacian eigenvalue of G is the largest eigenvalue of $\mathcal {L}$ .
The following bound was given in [Reference Harant and Richter18] without necessary and sufficient conditions of the equality case.
Corollary 6.4 [Reference Harant and Richter18]
Let G be a graph with m edges, the largest normalized Laplacian eigenvalue $\mu $ and the minimum degree $\delta>0$ . Then
with equality if and only if there exists an independent set C such that $d_u=\delta $ for each $u\in C$ , and every vertex v not in C is adjacent to exactly $(\mu -1)d_v$ vertices of C. Moreover, if an independent set C satisfies the above conditions, then
Proof Let $\mathcal {L}$ be the normalized Laplacian matrix of G, and let $x=(d_1^{\frac {1}{2}},\ldots ,d_n^{\frac {1}{2}})^\top $ . Since $(\mu I-\mathcal {L})x=\mu x$ , we have $(\mu I-\mathcal {L},x)\in \mathcal {M}(G)$ . By Lemma 2.1, we get
The following bound was given in Theorem 6.1 of [Reference Godsil and Newman14] without necessary and sufficient conditions of the equality case.
Corollary 6.5 [Reference Godsil and Newman14]
Let G be an n-vertex graph, and M is a positive semidefinite matrix indexed by vertices of G such that:
(a) $(M)_{ij}\leq 0$ if $i,j$ are two nonadjacent vertices.
(b) M has constant row sum $r>0$ .
(c) Every diagonal entry of M is t.
Then
with equality if and only if G has an independent set C such that $M[C]$ is diagonal and $\sum _{u\in C}(M)_{vu}=t~(v\notin C)$ . Moreover, if an independent set C satisfies the above conditions, then
7 Structural and spectral conditions
Let $\delta (G)$ denote the minimum degree of a graph G. In the following theorem, we give some simple structural and spectral conditions for determining the independence number $\alpha (G)$ , the Shannon capacity $\Theta (G),$ and the Lovász theta function $\vartheta (G)$ . These conditions mean that if a given independent set C satisfies some properties, then C must be a maximum independent set in G, and $\Theta (G)=\vartheta (G)=|C|$ .
Theorem 7.1 Let G be a graph with an independent set C. Then
if C satisfies one of the following conditions:
(1) Every vertex not in C is adjacent to exactly $\lambda>-\tau $ vertices of C, where $\tau $ is the minimum adjacency eigenvalue of G.
(2) Every vertex not in C is adjacent to exactly $-\tau $ vertices of C and G is regular, where $\tau <0$ is the minimum adjacency eigenvalue of G.
(3) $d_u=\delta (G)$ for each $u\in C$ , and every vertex not in C is adjacent to exactly $\mu -\delta (G)$ vertices of C, where $\mu>0$ is the largest Laplacian eigenvalue of G.
(4) $d_u=\delta (G)>0$ for each $u\in C$ , and every vertex v not in C is adjacent to exactly $(\mu -1)d_v$ vertices of C, where $\mu $ is the largest normalized Laplacian eigenvalue of G.
(5) Every vertex not in C is adjacent to all vertices of C and $2|C|\geq |V(G)|- \delta (G-C)$ .
(6) G has a spanning subgraph H ( $\delta (H)>0$ ) which is semiregular bipartite with parameters $(n_1,n_2,r_1,r_2)$ ( $n_1\leq n_2$ ), and C is the independent set with $n_2$ vertices in H.
(7) There exists a clique covering $\varepsilon $ such that $d_v^\varepsilon =\min _{u\in V(G)}d_u^\varepsilon>0$ for each $v\in C$ , and $|C\cap Q|=1$ for each $Q\in \varepsilon $ .
(8) There exists a uniform hypergraph H such that $G=\Omega (H)$ and C corresponds to a perfect matching in H.
Proof Parts (1) and (2) follow from Corollaries 4.5 and 6.1, respectively. Parts (3) and (4) follow from Corollaries 6.3 and 6.4, respectively. Parts (5) and (6) follow from Examples 4.4 and 4.3, respectively. Parts (7) and (8) follow from Theorems 4.7 and 4.9, respectively.
A family $\mathcal {F}$ of k-subsets of $\{1,\ldots ,n\}$ is called intersecting if $F_1\cap F_2\neq \emptyset $ for any $F_1,F_2\in \mathcal {F}$ . For $n\geq 2k$ , Erdös, Ko, and Rado [Reference Erdös, Ko and Rado11] proved that the maximum size of intersecting families of $\{1,\ldots ,n\}$ is $\binom {n-1}{k-1}$ .
The Kneser graph $K(n,k)$ is a graph whose vertices consist of all k-subsets of $\{1,\ldots ,n\}$ , and two vertices $U_1,U_2\subseteq \{1,\ldots ,n\}$ are adjacent if and only if $U_1\cap U_2=\emptyset $ . The Erdös–Ko–Rado Theorem is equivalent to say that $\alpha (K(n,k))=\binom {n-1}{k-1}$ for $n\geq 2k$ . It is known [Reference Godsil and Royle15, Theorem 9.4.3] that the minimum adjacency eigenvalue of $K(n,k)$ is $-\binom {n-k-1}{k-1}$ . By computation, the Hoffman bound for $K(n,k)$ is $\binom {n-1}{k-1}$ . So we have $\alpha (K(n,k))=\binom {n-1}{k-1}$ because $K(n,k)$ has an independent set of size $\binom {n-1}{k-1}$ .
We can also obtain the EKR Theorem without using the Hoffman bound. All k-subsets containing a fixed vertex $1$ forms an independent set C of size $\binom {n-1}{k-1}$ , and every vertex not in C is adjacent to exactly $\binom {n-k-1}{k-1}$ vertices of C. From part (2) of Theorem 7.1, we have
8 Concluding remarks
Let $M^{\otimes k}$ denote the Kronecker product of k copies of matrix M. If there is some k such that $\alpha (G^k)=\vartheta (G)^k$ , then $\Theta (G)=\vartheta (G)$ . We can derive the following characterization of graphs satisfying $\alpha (G^k)=\vartheta (G)^k$ .
Theorem 8.1 Let $(M,x)\in \mathcal {M}(G)$ be a matrix-vector pair for graph G such that $\vartheta (G)=F(M,x)$ . There is some k such that $\alpha (G^k)=\vartheta (G)^k$ if and only if $G^k$ has an independent set C such that $(M^{\otimes k},x^{\otimes k})$ and C satisfy the conditions given in part (2) of Theorem 3.1. Moreover, if $G^k$ has an independent set C satisfies the above conditions, then
Proof Since $(M,x)\in \mathcal {M}(G)$ , we have $(M^{\otimes k},x^{\otimes k})\in \mathcal {M}(G^k)$ . By Theorem 3.1, we have
with equality if and only if $G^k$ has an independent set C such that $(M^{\otimes k},x^{\otimes k})$ and C satisfy the conditions given in part (2) of Theorem 3.1. Moreover, if $G^k$ has an independent set C satisfies the above conditions, then by Theorem 4.2, we have
Since $\alpha (G^k)^{\frac {1}{k}}\leq \Theta (G)\leq \vartheta (G)$ , we have $\Theta (G)=\vartheta (G)$ .
In [Reference Lovász19], Lovász proved that $\Theta (C_5)=\sqrt {5}$ . The cycle $C_5$ is also an example for Theorem 8.1.
Example 8.2 Let A be the adjacency matrix of the cycle $C_5$ , then $(A+2I,e)\in \mathcal {M}(C_5)$ and $((A+2I)^{\otimes 2},e^{\otimes 2})\in \mathcal {M}(C_5^2)$ . Suppose that $\{0,1,2,3,4\}$ is the vertex set of $C_5$ and $E(C_5)=\{\{0,1\},\{1,2\},\{2,3\},\{3,4\},\{4,0\}\}$ . Then $S=\{00,12,24,31,43\}$ is an independent set of $C_5^2$ . By computation, we know that $((A+2I)^{\otimes 2},e^{\otimes 2})$ and S satisfy the conditions given in part (2) of Theorem 3.1. By Theorem 8.1, we have $\alpha (C_5^2)=\vartheta (C_5)^2=\Theta (C_5)^2=5$ .
Acknowledgment
The authors would like to thank the reviewer and Editors for giving valuable comments and suggestions.