Published online by Cambridge University Press: 20 November 2018
Throughout this paper all hypothesized spaces are T1. A regular space is called R-closed[11](regular-closed [7] or, equivalently, regular-complete [2]) provided that it is a closed subset of any regular space in which it can be embedded. A regular space (X, ℐ) is called minimal regular [2; 4] if there exists no regular topology on X which is strictly weaker than J. We shall call a regular space X strongly minimal regular provided that each point x ∈ X has a fundamental system of neighbourhoods such that for every V ∈ , X\V is an R-closed space.
In §2 we note that a strongly minimal regular space is minimal regular, but we do not know if the converse holds. M. P. Berri and R. H. Sorgenfrey [4] proved that a minimal regular space is R-closed, and Horst Herrlich [7] gave an example of an R-closed space that is not minimal regular.