Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T00:32:45.004Z Has data issue: false hasContentIssue false

Transitivity Properties of Fuchsian Groups

Published online by Cambridge University Press:  20 November 2018

Peter J. Nicholls*
Affiliation:
Northern Illinois University, DeKalb, Illinois
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Fuchsian group G is a discrete group of fractional linear transforms each of which preserve a disc (or half plane). We consider only groups which preserve the unit disc Δ = {z: |z| < 1} and none of whose transforms, except the identity, fix infinity (any Fuchsian group is conjugate to such a group).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1976

References

1. Ahlfors, L. V., Remarks on the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A.l. 87 (1951).Google Scholar
2. Artin, E., Ein mechanische System mit quasiergodischen Bahnen, Abh. Math. Sem. Univ. Hamburg S (1924), 170175.Google Scholar
3. Beardon, A. F. and Maskit, B., Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 112.Google Scholar
4. Ford, L. R., Automorphic functions (Chelsea, New York, 1951).Google Scholar
5. Hedlund, G. A., Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), 530542.Google Scholar
6. Hedlund, G. A., A new pr∞f for a metrically transitive system, Amer. J. Math. 62 (1940), 233242.Google Scholar
7. Hopf, E., Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc. 39 (1936), 299314.Google Scholar
8. Hopf, E., Statistik der geodatischen Linien in Mannigfaltigkeiten negativer Krummung, Ber. Verh. Sachs. Akad. Wiss. Leipzig 91 (1939), 261304.Google Scholar
9. Hopf, E., Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc. 77 (1971), 863877.Google Scholar
10. Koebe, P., Riemannsche Mannigfaltigkeiten una nicht euklidische Raumformen VI, S.-B. Deutsch. Akad. Wiss. Berlin. Kl. Math. Phys. Tech. (1930), 504541.Google Scholar
11. Lehner, J., Discontinuous groups and automorphic functions, Math. Survey 8 (Amer. Math. Soc, Providence, 1964).Google Scholar
12. Myberg, P. J., Einige Anwendungen der Kettenbriiche in der Théorie der bindren quadratischen Formen und der elliptischen Modulfunktionen, Ann. Acad. Sci. Fenn. Ser. A.l. 23 (1925).Google Scholar
13. Myberg, P. J., Ein Approximationssatz fiir die Fuchssen Gruppen, i\cta Math. 57 (1931), 389409.Google Scholar
14. Nicholls, P. J., Special limit points for Fuchsian groups and automorphic functions near the limit set, Indiana U. Math. J. 24 (1974), 143148.Google Scholar
15. Nicholls, P. J., Transitive horocycles for Fuchsian groups, Duke Math. J. 1-2 (1975), 307312.Google Scholar
16. Patterson, S. J., A lattice point problem in hyperbolic space, Mathematika 22 (1975), 8188.Google Scholar
17. Patterson, S. J., Spectral theory and Fuchsian groups, to appear.Google Scholar
18. Pommerenke, Ch., On the Green s function of Fuchsian groups, to appear.Google Scholar
19. Sario, L. and Nakai, M., Classification theory of Riemann surfaces, (Springer-Verlag, New York, 1970).Google Scholar
20. Seidel, Y., On a metric property of Fuchsian groups, Proc. Nat. Acad. Sci. U.S.A. 21 (1935), 475478.Google Scholar
21. Shimada, S., On P. J. Myrbergf s approximation theorem on Fuchsian groups, Mem. Coll. Sci., Kyoto U. Ser. A. 33 (1960), 231241.Google Scholar
22. Tsuji, M., On Hopf s ergodic theorem, Jap. J. Math. 19 (1945), 259284.Google Scholar
23. Tsuji, M., Potential theory in modern function theory (Maruzen, Tokyo, 1959).Google Scholar
24. Yujobo, Z., A theorem on Fuchsian groups, Math. Jap. 1 (1949), 168169.Google Scholar