Article contents
Topologies on Generalized Inner Product Spaces
Published online by Cambridge University Press: 20 November 2018
Extract
In the present note we introduce a straightforward algebraic generalization of inner product spaces, which we appropriately name generalized inner product (GIP) spaces. In the same fashion in which different topologies :an be introduced in inner product spaces, adequate topologies can be introduced in GIP spaces in such a manner that topological vector spaces are obtained. We enumerate and derive some fundamental properties of different topologies in GIP spaces, having primarily in mind their possible later application to quantum physics.
The desirability of having in quantum physics more general structures than Hilbert spaces (in which quantum mechanics is usually formulated) is suggested by Dirac's formalism (2), which deals with “unnormalizable” vectors. Unfortunately, although this formalism is very elegant from the point of view of the facili ty of dealing with its symbolism, it completely lacks in mathematical rigour.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1969
References
- 4
- Cited by