Article contents
A Theorem on Derivations of Prime Rings with Involution
Published online by Cambridge University Press: 20 November 2018
Extract
In a recent note [2] we showed that if R is a prime ring and d ≠ 0 a derivation of R such that d(x)d(y) = d(y)d(x) for all x, y ∈ R then, if R is not a characteristic 2, R must be commutative. (If char R = 2 we showed that R must be an order in a 4-dimensional simple algebra.)
In this paper we shall consider a similar problem, namely, that of a prime ring R with involution * where d(x)d(y) = d(y)d(x) not for all x, y ∈ R but merely for symmetric elements x* = x and y* = y. Although it is clear that some results can be obtained if R is of characteristic 2, we shall only be concerned with the case char R ≠ 2. Even in this case one cannot hope to extend the result cited in the first paragraph, that is, to show that R is commutative.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1981
References
- 11
- Cited by