Published online by Cambridge University Press: 20 November 2018
In [2], Irwin, Khabbaz, and Rayna discuss the splitting problem for abelian groups through the use of the tensor product. Throughout the paper they make a basic assumption, namely, that the torsion subgroup contains but one primary component. Under this restriction they introduce the concept of “splitting length”, which is a positive integer indicator of how far a group is from splitting. The results obtained along these lines may be extended to groups whose torsion subgroups contain any finite number of primary components by applying the work of Oppelt [4].
Irwin, Khabbaz, and Rayna [2] define the notion of a p-sequence and show that for groups A where T(A) is p-primary and A/T(A) has rank one, the existence of a torsion-free element with a p-sequence is sufficient for the group to split.