Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T09:18:21.757Z Has data issue: false hasContentIssue false

Systemes Fondamentaux D'unites de Certains Corps de Degre 4 et de Degre 8 Sur Q

Published online by Cambridge University Press:  20 November 2018

Claude Levesque*
Affiliation:
Université Laval, Québec, Québec
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lorsque Kn = Q(ω) est une extension algébrique de degré n sur Q telle que

avec DN, dZ, d|D2 et D2 + 4d > 0, nous avons prouvé [1] en utilisant certaines idées de Halter-Koch et Stender [2] que si

alors

est un système indépendant d'unités de Kn.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1982

References

1. Frei, G. and Levesque, C., Independent systems of units in certain algebraic number fields, J. reine angew. Math. 311/312 (1979), 116144./Google Scholar
2. F., Halter-Koch and H.-J., Stender, Unabhàngige Einheiten fur die Kôrper K = Q(n\/Dn ± d) mit d\Dn, Abh. Math. Sem. Univ. Hamburg 42 (1974), 3340./Google Scholar
3. Kubota, T., Uber den bizyklischen biquadratischen Zahlkôrper, Nagoya Math. J. 10 (1956), 6585./Google Scholar
4. Kuroda, S., Ûber die Klassenzahlen algebraischer Zahlkôrper, Nagoya Math. J. 1 (1950), 110./Google Scholar
5. H.-J., Stender, Lbsbare Gleichungen axn — byn — c und Grundeinheiten fur einige algebraische Zahlkôrper vom Grade n = 3, 4, 6, J. reine angew. Math. 290 (1977), 2462./Google Scholar
6. H.-J., Stender, Verstilmmelte Grundeinheiten fur biquadratische und bikubische Zahlkôrper, Math. Ann. 232 (1978), 5564./Google Scholar
7. Wada, H., On the class number and the unit group of certain algebraic number fields, Tokyo U., Fac. of Sc. J., Series 1, 13 (1966), 201209./Google Scholar