Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T04:03:59.685Z Has data issue: false hasContentIssue false

Surfaces with pg = q = 2 and an Irrational Pencil

Published online by Cambridge University Press:  20 November 2018

Francesco Zucconi*
Affiliation:
Università di Udine, Dipartimento di Matematica e Informatica, Via delle Scienze 206, 33100 Udine, Italia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe the irrational pencils on surfaces of general type with ${{p}_{g}}=q=2$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2003

References

[At] Atiyah, M. F. Vector bundles over an elliptic curve. Proc. LondonMath. Soc. (3) 7(1957), 414452.Google Scholar
[BZ] Barja, M. A. and Zucconi, F. On The Slope of Fibered Surfaces. Nagoya Math. J. 164(2001), 103131.Google Scholar
[BPV] Barth, W., Peters, C. and Van de Ven, A., Compact complex surfaces. Ergeb. Math. Grenzgeb. (3) 4(1984), Springer Verlag.Google Scholar
[Be1] Beauville, A., Surfaces algébriques complexes. Ast érisque 54(1978).Google Scholar
[Be2] Beauville, A. L’ inégalité pg ≥2 − 4 pour les surfaces de type général. Bull. Soc. Math. France 110(1982), 343346.Google Scholar
[Bl] Bolza, O., On binary sextics with linear transformations into themselves. J. of Math. (1888), 4870.Google Scholar
[Ca] Catanese, F. Fibred Surfaces, varieties isogeneous to a product and related moduli spaces. Amer. J. Math. (1) 122(2000), 144.Google Scholar
[CCM] Catanese, F., Ciliberto, C. and Mendes Lopes, M. On the classification of irregular surfaces of general type with non birational bicanonical map. Trans. Amer. Math. Soc. 350(1998), 275308.Google Scholar
[Ci] Ciliberto, C. The bicanonical map for surfaces of general type. Proc. Sympos. Pure Math. 621(1997), 5784.Google Scholar
[CM] Ciliberto, C. and Lopes, M. Mendes, On Surfaces with pg = q = 2. Adv. Geom. (3) 2(2002), 259280.Google Scholar
[Fu] Fujita, T. On Kaehler fibre spaces over curves. J. Math. Soc. Japan 30(1978), 779794.Google Scholar
[HP] Hacon, C. and Pardini, R., Surfaces with pg = q = 3. Trans. Amer.Math. Soc. (7) 354(2002), 26312638.Google Scholar
[Ha] Hartshorne, R., Algebraic geometry. Graduate Texts in Math. 52, Springer, 1976.Google Scholar
[Kl] Klein, F., The icosahedron and the solution of equations of the fifth degree. Dover Publications, New York, 1913.Google Scholar
[Pi] Pirola, G., Surfaces with pg = q = 3. Manuscripta Math. 108(2002), 167170.Google Scholar
[S] Serrano, F. Isotrivial Fibred Surfaces. Ann. Math. Pura Appl. (4) CLXXI(1996), 6381.Google Scholar
[Se] Serre, J. P., Représentations linéaires des groupes finis. Hermann, 1971.Google Scholar
[Sim] Simpson, C. Subspaces of moduli spaces of rank one local system. Ann. Sci. École. Norm. Sup. (4) 26(1993), 361401.Google Scholar
[Z1] Zucconi, F., Su alcune questioni relative alle superficie di tipo generale con applicazione canonica composta con un fascio o di grado tre. Tesi per il conseguimento del titolo di dottore di ricerca, consorzio delle Universit à di Pisa (sede amministrativa), Bari, Ferrara, Lecce, Parma, (1994), 1173.Google Scholar
[Z2] Zucconi, F. Abelian Covers and Isotrivial Canonical Fibrations. Comm. Algebra (12) 29(2001), 56415671.Google Scholar
[Z3] Zucconi, F., Generalized Hyperelliptic Surfaces. Trans. Amer.Math. Soc., to appear.Google Scholar