Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T14:16:38.568Z Has data issue: false hasContentIssue false

Suites D'Interpolation Pour les Classes de Bergman de la Boule et du Polydisque de Cn

Published online by Cambridge University Press:  20 November 2018

Eric Amar*
Affiliation:
Université de Paris-Sud, Orsay, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Soit Dn = ﹛z = (z1, . . . , zn) ∈ Cn, |zi| <> 1﹜ le polydisque de Cn et ƛn la mesure de Lebesgue de Cn normalisée sur Dn. Pour b > 0, .on définit les espaces de Bergman Ap(ƛn) de la manière suivante:

Ap(ƛn) est l'espace des fonctions analytiques dans Dn telles que:

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1978

References

Bibliographie

1. Amar, D. et E., Sur les théorèmes de Schwarz-Pick et Nevanlinna dans Cn, Preprint 167, Analyse Harmonique, Orsay (1975).Google Scholar
2. Amar, E., Méthodes hilbertiennes et interpolation, Preprint 152, Analyse Harmonique, Orsay (1975).Google Scholar
3. Amar, E., Interpolation dans le polydisque de O, Preprint 207, Analyse Harmonique, Orsay (1976).Google Scholar
4. Amar, E., Suites d'interpolation harmonique, Preprint 217, Analyse Harmonique, Orsay (1976).Google Scholar
5. Carleson, L., An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958).Google Scholar
6. Coifman, R. et Weiss, G., Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 21$ (Springer-Verlag, 1971).Google Scholar
7. F., Forelli et Rudin, W., Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24(1974).Google Scholar
8. Gamelin, T. W., Uniform algebras (Prentice Hall, 1969).Google Scholar
9. Horowitz, C., Zeros of functions in the Bergman spaces, Bull. Amer. Math. Soc. 80 (1974).Google Scholar
10. Horowitz, C. et Oberlin, D., Restriction of H? functions to the diagonal of Un, Indiana Univ. Math. J. 24 (1975).Google Scholar
11. Kabaila, V., Interpolation sequences for the H? classes in the case p < 1. Litovsk. Mat. Sb. 3 (1963).Google Scholar
12. Korany, A.i et Vagi, S., Intégrales singulières sur certains espaces homogènes. C.R.A.S. 268 (1969).“Google Scholar
13. Shields, A. L. et Williams, D. L., Bounded projections, duality and multipliers in spaces of analytic functions, T.A.M.S. 162 (1971).Google Scholar
14. H., Shapiro et Shields, A. L., On some interpolations problems for analytic functions, Amer. J. Math. 83 (1961).Google Scholar