Published online by Cambridge University Press: 20 November 2018
In [14] we began a study of C*-algebras corresponding to projective representations of the discrete Heisenberg group, and classified these C*-algebras up to *-isomorphism. In this sequel to [14] we continue the study of these so-called Heisenberg C*-algebras, first concentrating our study on the strong Morita equivalence classes of these C*-algebras. We recall from [14] that a Heisenberg C*-algebra is said to be of class i, i ∊ {1, 2, 3}, if the range of any normalized trace on its K0 group has rank i as a subgroup of R; results of Curto, Muhly, and Williams [7] on strong Morita equivalence for crossed products along with the methods of [21] and [14] enable us to construct certain strong Morita equivalence bimodules for Heisenberg C*-algebras.