Published online by Cambridge University Press: 20 November 2018
We introduce a new conjecture concerning the construction of elements in the annihilator ideal associated to a Galois action on the higher-dimensional algebraic $K$-groups of rings of integers in number fields. Our conjecture ismotivic in the sense that it involves the (transcendental) Borel regulator as well as being related to $l$–adic étale cohomology. In addition, the conjecture generalises the wellknown Coates–Sinnott conjecture. For example, for a totally real extension when $r\,=\,-2,\,-4,\,-6,\,\ldots $ the Coates–Sinnott conjecture merely predicts that zero annihilates ${{K}_{-2r}}$ of the ring of $S$–integers while our conjecture predicts a non-trivial annihilator. By way of supporting evidence, we prove the corresponding (conjecturally equivalent) conjecture for the Galois action on the étale cohomology of the cyclotomic extensions of the rationals.