Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T01:08:18.712Z Has data issue: false hasContentIssue false

Spherical Homology Classes in the Bordism of Lie Groups

Published online by Cambridge University Press:  20 November 2018

Richard Kane
Affiliation:
University of Western OntarioLondon, Ontario
Guillermo Moreno
Affiliation:
Universitat Autὸma de Barcelona, Barcelona, Spain
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mod torsion Hurewicz map

for compact Lie groups provides a useful and efficient means of studying G. In effect, it measures how far G fails to be a product of spheres. For the Hopf-Samelson theorem (see [17]) tells us that

In other words

Serre pointed out that there exists a map

inducing this Q isomorphism.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1988

References

1. Adams, J. F., Stable homology and generalized homology (University of Chicago Press, 1974).Google Scholar
2. Barrratt, M. and Mahowald, M., The metastable homotopy of O(n). Bull. Amer. Math. Soc. 70 (1964), 758760.Google Scholar
3. Bott, R., The space of loops on a Lie group, Michigan Math. J. 5 (1958), 3661.Google Scholar
4. Browder, W., On differential Hopf algebras, Trans. Amer. Math. Soc. 107 (1963), 153178.Google Scholar
5. Cartan, H., Séminaire Cartan: Ecole Normal Supérieure 54/55.Google Scholar
6. Clark, A., Homotopy commutativity and the Moore spectral sequence, Pacific J. Math. 75 (1965), 6574.Google Scholar
7. Clark, F., On the K-theory of a loop space of a Lie group, Proc. Camb. Phil. Soc. 57 (1974), 120.Google Scholar
8. Harper, J., H-spaces with torsion, Memoirs Amer. Math. Soc. 223 (1979).Google Scholar
9. Harper, J., Regularity of finite H-spaces, Illinois J. Math. 23 (1979), 330333.Google Scholar
10. Kane, R., The BP homology of H-spaces, Trans. Amer. Mach. 241 (1978), 99119.Google Scholar
11. Kane, R., RatinalBP operations and the Chern character, Math. Proc. Camb. Phil. Soc. 84 (1978), 6572.Google Scholar
12. Kane, R., BP homology and finite H-spaces, Springer-Verlag, Lecture Notes in Matematics 673 (1978), 93105.Google Scholar
13. Kervaire, M. A., Some non stable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161169.Google Scholar
14. Kumpel, P. G., Lie groups and products of spheres, Proc. Amer. Math. Soc. 16 (1965), 13501356.Google Scholar
15. Lundell, A. T., The embeddings O(n) ⊂ U(n) and U(n) ⊂ Sp(n) and a Samelson product, Michigan J. Math. 13 (1966), 133145.Google Scholar
16. Milnor, J., The Steenrod algebra and its dual, Annals of Math. 67 (1958), 150171.Google Scholar
17. Milnor, J. and Moore, J. C., On the structure of Hopf algebras, Annals of Math. 81 (1965), 211264.Google Scholar
18. Mimura, M., The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ. 6 (1967), 131176.Google Scholar
19. Mimura, M. and Toda, H., Cohomology operations and the homotopy of compact Lie groups, Topology 9 (1970), 317336.Google Scholar
20. Moreno, G., Thesis, University of Western Ontario, (1986).Google Scholar
21. Segal, D. M., The co-operations on MU*(CP) and MU*(HP) and primitive generators, J. Pure and Applied Algebra 14 (1979), 315322.Google Scholar
22. Serre, J. P., Groupes d'Homotopie and classes de groupes abeliens, Annals of Math. 58 (1953), 258294.Google Scholar
23. Smith, L., Relation between spherical and primitive homology classes in topological groups, Topology 5(1969), 6980.Google Scholar
24. Stasheff, J. D., Problem list, Proceedings of Chicago Circle Topolgy Conference (1968).Google Scholar
25. Switzer, R. M., Algebraic topology-homotophy and homology, (Springer-Verlag, 1975).CrossRefGoogle Scholar
26. Thomas, E., Steenrod squares and H-spaces II, Annals of Math, 81 (1965), 473495.Google Scholar
27. Watanabe, T., The homology of the loop space of the exceptional group F4 , Osaka J. Math. 15 (1978).Google Scholar
28. Wilkerson, C. W., Mod p decompositions of Mod p H-spaces, Springer-Verlag Lecture Note in Mathematics 428 (1974), 5257.Google Scholar