Article contents
Some Applications of the Perturbation Determinant in Finite von Neumann Algebras
Published online by Cambridge University Press: 20 November 2018
Abstract
In the finite von Neumann algebra setting, we introduce the concept of a perturbation determinant associated with a pair of self-adjoint elements ${{H}_{0}}$ and $H$ in the algebra and relate it to the concept of the de la Harpe–Skandalis homotopy invariant determinant associated with piecewise ${{C}^{1}}$-paths of operators joining ${{H}_{0}}$ and $H$. We obtain an analog of Krein's formula that relates the perturbation determinant and the spectral shift function and, based on this relation, we derive subsequently (i) the Birman–Solomyak formula for a general non-linear perturbation, (ii) a universality of a spectral averaging, and (iii) a generalization of the Dixmier–Fuglede–Kadison differentiation formula.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2010
References
- 1
- Cited by