No CrossRef data available.
Article contents
Simple Links in Locally Compact Connected Hausdorff Spaces are Nondegenerate
Published online by Cambridge University Press: 20 November 2018
Extract
The fact that simple links in locally compact connected metric spaces are nondegenerate was probably first established by C. Kuratowski and G. T. Whyburn in [2], where it is proved for Peano continua. J. L. Kelley in [3] established it for arbitrary metric continua, and A. D. Wallace extended the theorem to Hausdorff continua in [4]. In [1], B. Lehman proved this theorem for locally compact, locally connected Hausdorff spaces. We will show that the locally connected property is not necessary.
A continuum is a compact connected Hausdorff space. For any two points a and b of a connected space M, E(a, b) denotes the set of all points of M which separate a from b in M. The interval ab of M is the set E(a, b) ∪ {a, b}.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1981