Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T00:27:06.914Z Has data issue: false hasContentIssue false

The Set of all Generalized Limits of Bounded Sequences

Published online by Cambridge University Press:  20 November 2018

Meyer Jerison*
Affiliation:
Purdue University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let M be the normed linear space whose general element, x, is a bounded sequence

of real numbers, and ‖x‖ = l.u.b. |ξn|. Let T denote the linear operation (of norm 1) defined by Tx = (ξ2, ξ3, … , ξn+1,…). A generalized limit is a linear functional ϕ on M which satisfies the conditions

.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1957

References

1. Arens, R. F. and Kelly, J. L., Characterizations of the space of continuous functions over a compact Hausdorff space, Trans. Amer. Math. Soc, 62 (1947), 499508.Google Scholar
2. Banach, S., Théorie des opérations linéaires (Warsaw 1932).Google Scholar
3. Bourbaki, N., Espaces vectoriels topologiques (Actualités scientifiques et industrielles, no. 1189, Paris, 1953).Google Scholar
4. M.Jerison, , A property of extreme points of compact convex sets, Proc. Amer. Math. Soc, 5 (1954), 782783.Google Scholar
5. Kakutani, S., Concrete representations of abstract (M)-spaces, Ann. of Math., 42 (1941), 9941024.Google Scholar
6. Kakutani, S., Ergodic theory, Proc. Internat. Congr. Math., Cambridge, 1950, II, 128142.Google Scholar
6a. Kryloff, N. and Bogoliouboff, N., La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math., 38 (1937), 65113.Google Scholar
7. Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167190.Google Scholar
8. Mazur, S., On the generalized limit of bounded sequences, Colloq. Math., 2 (1951), 173175.Google Scholar
9. Milman, D., Characteristics of extremal points of regularly convex sets, Doklady Akad. Nauk SSSR (N.S.), 57 (1947), 119122.Google Scholar
10. von Neumann, J., Invariant Measures (Institute for Advanced Study, Princeton, 1940-1941).Google Scholar