Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T01:11:07.419Z Has data issue: false hasContentIssue false

Secant Spaces to Curves

Published online by Cambridge University Press:  20 November 2018

Joachim von Zur Gathen*
Affiliation:
University of Toronto, Toronto, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A classical question in algebraic geometry is whether a given projection of a projective space induces an isomorphism on a given closed subvariety. To answer it, one investigates secant lines to the subvariety. There has been a lot of recent activity in this field ([12], [14],[18], [21], [23]): see [14] and [12] for references).

An obvious generalization of the secant lines is provided by the secant r-planes, which intersect a given closed subvariety in r + 1 linearly independent points. The closure of the set of these secant r-planes is the secant variety, and the aim of this paper is to determine its rational equivalence class in the case of curves. There is an extensive classical literature about this problem.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1983

References

1. Canuto, G., Associated curves and Pliicker formulas in Grassmannians, Invent. Math. 53(1979), 7790.Google Scholar
2. Castelnuovo, G., Una applicazione della geometria enumerativa alle curve algebriche, Rend. Circ. Mat. Palermo 3(1889), 2737.Google Scholar
3. Cayley, A., Mémoire sur les courbes à double courbure et les surfaces développables, J. de Math. Pures et Appl. 70 (1845), 245250; also Math. Papers 1, 207–211.Google Scholar
4. Cayley, A., On skew surfaces, otherwise scrolls, London Phil. Trans. 153(1863), 453483; also Math. Papers 5, 168–200.Google Scholar
5. Cremona, L., Note sur les cubiques gauches, Crelle J. F. reine und ang. Math. 60 (1862), 188191.Google Scholar
6. Giambelli, G. Z., Risoluzione delproblema generale numerativo per gli spazi plurisecanti di una curva algebrica, Mem. Ace. Torino 59(1908), 433508.Google Scholar
7. Griffiths, P. and Harris, J., Principles of algebraic geometry (John Wiley, New York, 1978).Google Scholar
8. Griffiths, P. and Harris, J., On the variety of special linear systems on a general algebraic curve, Duke Math. J. 47 (1980), 233272.Google Scholar
9. Hartshorne, R., Algebraic geometry (Springer Verlag, 1977).CrossRefGoogle Scholar
10. Hilbert, D., Mathematical problems. Bull. AMS 8 (1901), 437479.Google Scholar
11. Hodge, W. and Pedoe, D., Methods of algebraic geometry (Cambridge, 1952).Google Scholar
12. Holme, A. and Roberts, J., Pinch-points and multiple locus of generic projections of singular varieties, Adv. Math. 33(1919), 212256.Google Scholar
13. Kleiman, S. L., The transversality of a general translate, Comp. Math. 28 (1974), 287297.Google Scholar
14. Kleiman, S. L., The enumerative theory of singularities, Proc. Nordic Summer School, Oslo (1976), 297396.Google Scholar
15. Kleiman, S. L., Problem 15. Rigorous foundation of Schubert's enumerative calculus, Proc. Symp. Pure Math., “Mathematical developments arising from the Hilbert problems”, 28(1916), 445482.Google Scholar
16. Kleiman, S. L. and Laksov, D., Schubert calculus, Amer. Math. Monthly 79(1972), 10611082.Google Scholar
17. Laksov, D., Algebraic cycles on Grassmann varieties, Adv. Math. 9 (1972), 267295.Google Scholar
18. Laksov, D., Secant bundles and Todd“s formula for the double points of maps into Pn, Proc. London Math. Soc. 37(1978), 120142.Google Scholar
19. Le Barz, P., Validité de certaines formules de géométrie énumérative, C. R. Acad. Se. Paris 289(1979), 755758.Google Scholar
20. Le Barz, P., Une courbe gauche avec —4 quadrisécantes, preprint, Université de Nice (1980).Google Scholar
21. Lluis, E., Variedades algebraicas con ciertas condiciones en sus tangentes. Bol. Soc. Mat. Mexicana 7(1962), 4756.Google Scholar
22. Macdonald, I. G., Some enumerative formulae for algebraic curves, Proc. Cambridge Phil. Soc. 54 (1958), 399416.Google Scholar
23. Peters, C. A. M. and Simonis, J., A secant formula, Quart. J. Math. Oxford 27(1976), 181189.Google Scholar
24. Piene, R., Numerical characters of a curve in projective n-space, Proc. Nordic Summer School, Oslo (1976), 475495.Google Scholar
25. Plucker, J., Théorie der algebraischen Curven, Bonn (1839).Google Scholar
26. Salmon, G., On the classification of curves of double curvature, Cambridge and Dublin Math. J. 5 (1850), 2346.Google Scholar
27. Salmon, G., On the degree of the surface reciprocal to a given one, Trans. Royal Irish Acad. Dublin 23(1856), 461488.Google Scholar
28. Severi, F., Sopra alcune singolarità delle curve di un iperspazio, Mem. Ace. Torino 57(1902), 81114.Google Scholar
29. Shafarevitch, I. R., Basic algebraic geometry (Springer Verlag, 1974).CrossRefGoogle Scholar
30. Vainsencher, I., Counting divisors with prescribed multiplicities, Trans. AMS 267 (1981), 399422.Google Scholar
31. Zeuthen, H. G., Sur les singularités ordinaires des courbes géométriques à double courbure, C. R. Acad. Se. Paris 67 (1868), 225229.Google Scholar
32. Zeuthen, H. G., Sur les singularités ordinaires d'une courbe gauche et d'une surface développable, Ann. di Mat. 3(1870), 175217.Google Scholar