Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T00:20:42.171Z Has data issue: false hasContentIssue false

Salem Numbers and Pisot Numbers via Interlacing

Published online by Cambridge University Press:  20 November 2018

James McKee
Affiliation:
Department of Mathematics, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK email: [email protected]
Chris Smyth
Affiliation:
School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a general construction of Salem numbers via rational functions whose zeros and poles mostly lie on the unit circle and satisfy an interlacing condition. This extends and unifies earlier work. We then consider the “obvious” limit points of the set of Salem numbers produced by our theorems and show that these are all Pisot numbers, in support of a conjecture of Boyd. We then show that all Pisot numbers arise in this way. Combining this with a theorem of Boyd, we produce all Salem numbers via an interlacing construction.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Bertin, M.-J. and Boyd, D. W., A characterization of two related classes of Salem numbers. J. Number Theory 50(1995), no. 2, 309317. http://dx.doi.org/10.1006/jnth.1995.1024 Google Scholar
[2] Beukers, F. and Heckman, G. Monodromy for the hypergeometric function n Fn−1. Invent. Math. 95(1989), no. 2, 325354. http://dx.doi.org/10.1007/BF01393900 Google Scholar
[3] Beukers, F. and Smyth, C. J., Cyclotomic points on curves. In: Number theory for the millennium, I (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 6785.Google Scholar
[4] Boyd, D. W., Small Salem numbers. Duke Math. J. 44(1977), no. 2, 315328. http://dx.doi.org/10.1215/S0012-7094-77-04413-1 Google Scholar
[5] Boyd, D. W., Pisot and Salem numbers in intervals of the real line. Math. Comp. 32(1978), no. 144, 12441260. http://dx.doi.org/10.1090/S0025-5718-1978-0491587-8 Google Scholar
[6] Cannon, J. W. and Wagreich, Ph., Growth functions of surface groups. Math. Ann. 293(1992), no. 2, 239257. http://dx.doi.org/10.1007/BF01444714 Google Scholar
[7] Dufresnoy, J. and Pisot, Ch., Etude de certaines fonctions méromorphes bornées sur le cercle unité. Application à un ensemble fermé d’entiers algébriques. Ann. Sci. Ecole Norm. Sup. (3) 72(1955), 6992.Google Scholar
[8] Fisk, R., Polynomials, roots and interlacing. arxiv:math/0612833v2.Google Scholar
[9] Godsil, C. and Royle, G. Algebraic graph theory. Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001.Google Scholar
[10] Kronecker, L., Zwei Sätseüber Gleichungen mit ganzzahligen Coefficienten. J. Reine Angew. Math. 53(1857), 173175.Google Scholar
[11] Lakatos, P., A new construction of Salem polynomials. C. R. Math. Acad. Sci. Soc. R. Can. 25(2003), no. 2, 4754.Google Scholar
[12] Mc Kee, J. F., Families of Pisot numbers with negative trace. Acta Arith. 93(2000), no. 4, 374385.Google Scholar
[13] Mc Kee, J. F., Computing totally positive algebraic integers of small trace. Math. Comp. 80(2011), 10411052. http://dx.doi.org/10.1090/S0025-5718-2010-02424-X Google Scholar
[14] Mc Kee, J. F., Rowlinson, P. and Smyth, C. J., Salem numbers and Pisot numbers from stars. In: Number theory in progress, Vol. I (Zakopane-Kocielisko, 1997), de Gruyter, Berlin, 1999, pp. 309319.Google Scholar
[15] Mc Kee, J. F. and Smyth, C. J., Salem numbers of trace, and traces of totally positive algebraic integers. In: Algorithmic number theory, Lecture Notes in Computer Science, 3076, Springer, Berlin, 2004, pp. 327337.Google Scholar
[16] Mc Kee, J. F. and Smyth, C. J., There are Salem numbers of every trace. Bull. London Math. Soc. 37(2005), no. 1, 2536. http://dx.doi.org/10.1112/S0024609304003790 Google Scholar
[17] Mc Kee, J. F. and Smyth, C. J., Salem numbers, Pisot numbers, Mahler measure, and graphs. Experiment. Math. 14(2005), no. 2, 211229. http://dx.doi.org/10.1080/10586458.2005.10128915 Google Scholar
[18] Salem, R., A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan. Duke Math. J. 11(1944), 103108. http://dx.doi.org/10.1215/S0012-7094-44-01111-7 Google Scholar
[19] Smyth, C. J., Salem numbers of negative trace. Math. Comp. 69(2000), no. 230, 827838. http://dx.doi.org/10.1090/S0025-5718-99-01099-6Google Scholar