Article contents
Rings whose Indecomposable Injective Modules are Uniserial
Published online by Cambridge University Press: 20 November 2018
Extract
A module is uniserial in case its submodules are linearly ordered by inclusion. A ring R is left (right) serial if it is a direct sum of uniserial left (right) R-modules. A ring R is serial if it is both left and right serial. It is well known that for artinian rings the property of being serial is equivalent to the finitely generated modules being a direct sum of uniserial modules [8]. Results along this line have been generalized to more arbitrary rings [6], [13].
This article is concerned with investigating rings whose indecomposable injective modules are uniserial. The following question is considered which was first posed in [4]. If an artinian ring R has all indecomposable injective modules uniserial, does this imply that R is serial? The answer is yes if R is a finite dimensional algebra over a field. In this paper it is shown, provided R modulo its radical is commutative, that R has every left indecomposable injective uniserial implies that R is right serial.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1982
References
References>
- 9
- Cited by